3 research outputs found

    76-Year Decline and Recovery of Aspen Mediated by Contrasting Fire Regimes: Long-Unburned, Infrequent and Frequent Mixed-Severity Wildfire

    Get PDF
    Quaking aspen (Populus tremuloides) is a valued, minor component on northeastern California landscapes. It provides a wide range of ecosystem services and has been in decline throughout the region for the last century. This decline may be explained partially by the lack of fire on the landscape due to heavier fire suppression, as aspen benefit from fire that eliminates conifer competition and stimulates reproduction through root suckering. However, there is little known about how aspen stand area changes in response to overlapping fire. Our study area in northeastern California on the Lassen, Modoc and Plumas National Forests has experienced recent large mixed-severity wildfires where aspen was present, providing an opportunity to study the re-introduction of fire. We observed two time periods; a 52-year absence of fire from 1941 to 1993 preceding a 24-year period of wildfire activity from 1993 to 2017. We utilized aerial photos and satellite imagery to delineate aspen stands and assess conifer cover percent. We chose aspen stands in areas where wildfires overlapped (twice-burned), where only a single wildfire burned, and areas that did not burn within the recent 24-year period. We observed these same stands within the first period of fire exclusion for comparison (i.e., 1941–1993). In the absence of fire, all aspen stand areas declined and all stands experienced increases in conifer composition. After wildfire, stands that burned experienced a release from conifer competition and increased in stand area. Stands that burned twice or at high severity experienced a larger removal of conifer competition than stands that burned once at low severity, promoting expansion of aspen stand area. Stands with less edge:area ratio also expanded in area more with fire present. Across both time periods, stand movement, where aspen stand footprints were mostly in new areas compared to footprints of previous years, was highest in smaller stands. In the fire exclusion period, smaller stands exhibited greater loss of area and changes in location (movement) than in the return of fire period, highlighting their vulnerability to loss via succession to conifers in the absence of disturbances that provide adequate growing space for aspen over time

    76-year decline and recovery of aspen mediated by contrasting fire regimes: Longunburned, infrequent and frequent mixedseverity wildfire

    No full text
    Quaking aspen (Populus tremuloides) is a valued, minor component on northeastern California landscapes. It provides a wide range of ecosystem services and has been in decline throughout the region for the last century. This decline may be explained partially by the lack of fire on the landscape due to heavier fire suppression, as aspen benefit from fire that eliminates conifer competition and stimulates reproduction through root suckering. However, there is little known about how aspen stand area changes in response to overlapping fire. Our study area in northeastern California on the Lassen, Modoc and Plumas National Forests has experienced recent large mixed-severity wildfires where aspen was present, providing an opportunity to study the re-introduction of fire. We observed two time periods; a 52-year absence of fire from 1941 to 1993 preceding a 24-year period of wildfire activity from 1993 to 2017. We utilized aerial photos and satellite imagery to delineate aspen stands and assess conifer cover percent. We chose aspen stands in areas where wildfires overlapped (twice-burned), where only a single wildfire burned, and areas that did not burn within the recent 24-year period. We observed these same stands within the first period of fire exclusion for comparison (i.e., 1941–1993). In the absence of fire, all aspen stand areas declined and all stands experienced increases in conifer composition. After wildfire, stands that burned experienced a release from conifer competition and increased in stand area. Stands that burned twice or at high severity experienced a larger removal of conifer competition than stands that burned once at low severity, promoting expansion of aspen stand area. Stands with less edge:area ratio also expanded in area more with fire present. Across both time periods, stand movement, where aspen stand footprints were mostly in new areas compared to footprints of previous years, was highest in smaller stands. In the fire exclusion period, smaller stands exhibited greater loss of area and changes in location (movement) than in the return of fire period, highlighting their vulnerability to loss via succession to conifers in the absence of disturbances that provide adequate growing space for aspen over time

    Tamm Review: Reforestation for resilience in dry western U.S. forests

    Get PDF
    The increasing frequency and severity of fire and drought events have negatively impacted the capacity and success of reforestation efforts in many dry, western U.S. forests. Challenges to reforestation include the cost and safety concerns of replanting large areas of standing dead trees, and high seedling and sapling mortality rates due to water stress, competing vegetation, and repeat fires that burn young plantations. Standard reforestation practices have emphasized establishing dense conifer cover with gridded planting, sometimes called \u27pines in lines\u27, followed by shrub control and pre-commercial thinning. Resources for such intensive management are increasingly limited, reducing the capacity for young plantations to develop early resilience to fire and drought. This paper summarizes recent research on the conditions under which current standard reforestation practices in the western U.S. may need adjustment, and suggests how these practices might be modified to improve their success. In particular we examine where and when plantations with regular tree spacing elevate the risk of future mortality, and how planting density, spatial arrangement, and species composition might be modified to increase seedling and sapling survival through recurring drought and fire events. Within large areas of contiguous mortality, we suggest a “three zone” approach to reforestation following a major disturbance that includes; (a) working with natural recruitment within a peripheral zone near live tree seed sources; (b) in a second zone, beyond effective seed dispersal range but in accessible areas, planting a combination of clustered and regularly spaced seedlings that varies with microsite water availability and potential fire behavior; and (c) a final zone defined by remote, steep terrain that in practice limits reforestation efforts to the establishment of founder stands. We also emphasize the early use of prescribed fire to build resilience in developing stands subject to increasingly common wildfires and drought events. Finally, we highlight limits to our current understanding of how young stands may respond and develop under these proposed planting and silvicultural practices, and identify areas where new research could help refine them
    corecore