133 research outputs found

    Know Your Audience: Designing a Nutrition Education Game for Middle School Kids

    Get PDF
    Purpose: In recent years video games have emerged as potential tools to tackle obesity. Games that use motion-sensing controllers and interfaces are often used to promote physical activity. Games are also used to impart education about diet, nutrition and health. Our goal in this project is to address childhood obesity through the design, development and implementation of a video game to teach nutrition concepts to middle-school-aged children. Method: Our target audience is middle-school students in a low-income neighborhood in Dallas. To guide us in the game design, we collected data about students’ gaming preferences through surveys, focus groups and student critiques of existing games. The survey addressed students’ choice of gaming platform and frequency of game play. Through focus groups we explored their gaming preferences and opinions on game features. For the critiques, students played nutrition-themed games from the “Apps for Healthy Kids” competition and completed an open-ended survey about those games. Results: We collected data from 76 students (ages 12 – 15 years). 72% of them play games regularly (at least once a week) on consoles while 73% play on portable devices, 68% on computers and 62% play browser-based games. Console games were preferred by 89% of boys but only 56% of girls. The numbers were 81% & 66% for portable devices, but almost the same for computer games and browser-based games. Students preferred action games, games that allowed character customization and games that had multiple levels. Several students are turned off by strong depictions of violence. Students liked the nutrition themed games, but only one game really engaged them. They wanted the food in these games to look real and wanted more familiar food choices. Conclusions: Our observations and height and weight data indicate that malnutrition rather than obesity is likely a bigger problem for these children. Consoles and portable devices were the platforms of choice although there are differences by gender. The results also provide insights into what is likely to work for this audience in terms of game mechanics and game features. The results also reinforce the need for using multiple approaches to collecting data

    Structure and function of an insect α-carboxylesterase (α Esterase 7) associated with insecticide resistance

    Get PDF
    Insect carboxylesterases from the αEsterase gene cluster, such as αE7 (also known as E3) from the Australian sheep blowfly Lucilia cuprina (LcαE7), play an important physiological role in lipid metabolism and are implicated in the detoxification of or

    Improving a Natural Enzyme Activity through Incorporation of Unnatural Amino Acids

    Get PDF
    The bacterial phosphotriesterases catalyze hydrolysis of the pesticide paraoxon with very fast turnover rates and are thought to be near to their evolutionary limit for this activity. To test whether the naturally evolved turnover rate could be improved through the incorporation of unnatural amino acids and to probe the role of peripheral active site residues in nonchemical steps of the catalytic cycle (substrate binding and product release), we replaced the naturally occurring tyrosine amino acid at position 309 with unnatural L-(7-hydroxycoumarin-4-yl)ethylglycine (Hco) and L-(7-methylcoumarin-4-yl)ethylglycine amino acids, as well as leucine, phenylalanine, and tryptophan. Kinetic analysis suggests that the 7-hydroxyl group of Hco, particularly in its deprotonated state, contributes to an increase in the rate-limiting product release step of substrate turnover as a result of its electrostatic repulsion of the negatively charged 4-nitrophenolate product of paraoxon hydrolysis. The 8-11-fold improvement of this already highly efficient catalyst through a single rationally designed mutation using an unnatural amino acid stands in contrast to the difficulty in improving this native activity through screening hundreds of thousands of mutants with natural amino acids. These results demonstrate that designer amino acids provide easy access to new and valuable sequence and functional space for the engineering and evolution of existing enzyme functions

    Massive Changes in Genome Architecture Accompany the Transition to Self-Fertility in the Filamentous Fungus Neurospora tetrasperma

    Get PDF
    A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (<5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated with the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration

    Proceedings of Abstracts, School of Physics, Engineering and Computer Science Research Conference 2022

    Get PDF
    © 2022 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Plenary by Prof. Timothy Foat, ‘Indoor dispersion at Dstl and its recent application to COVID-19 transmission’ is © Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] present proceedings record the abstracts submitted and accepted for presentation at SPECS 2022, the second edition of the School of Physics, Engineering and Computer Science Research Conference that took place online, the 12th April 2022

    An improved infrastructure for the IceCube realtime system

    Get PDF

    Cross Correlation of IceCube Neutrinos with Tracers of Large Scale Structure

    Get PDF
    The origin of most astrophysical neutrinos is unknown, but extragalactic neutrino sources may follow the spatial distribution of the large-scale structure of the universe. Galaxies also follow the same large scale distribution, so establishing a correlation between galaxies and IceCube neutrinos could help identify the origins of the diffuse neutrinos observed by IceCube. Following a preliminary study based on the WISE and 2MASS catalogs, we will investigate an updated galaxy catalog with improved redshift measurements and reduced stellar contamination. Our IceCube data sample consists of track-like muon neutrinos selected from the Northern sky. The excellent angular resolution of track-like events and low contamination with atmospheric muons is necessary for the sensitivity of the analysis. Unlike a point source stacking analysis, the calculation of the cross correlation does not scale with the number of entries in the catalog, making the work tractable for catalogs with millions of objects. We present the development and performance of a two-point cross correlation of IceCube neutrinos with a tracer of the large scale structure

    Three-year performance of the IceAct telescopes at the IceCube Neutrino Observatory

    Get PDF
    IceAct is an array of compact Imaging Air Cherenkov Telescopes at the ice surface as part of the IceCube Neutrino Observatory. The telescopes, featuring a camera of 61 silicon photomultipliers and fresnel-lens-based optics, are optimized to be operated in harsh environmental conditions, such as at the South Pole. Since 2019, the first two telescopes have been operating in a stereoscopic configuration in the center of IceCube\u27s surface detector IceTop. With an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of improving current cosmic-ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors. First simulations indicate that the added information of a single telescope leads, e.g., to an improved discrimination between flux contributions from different primary particle species in the sensitive energy range. We review the performance and detector operations of the telescopes during the past 3 years (2020-2022) and give an outlook on the future of IceAct

    Searching for IceCube sub-TeV neutrino counterparts to sub-threshold Gravitational Wave events

    Get PDF
    Since the release of the Gravitational Wave Transient Catalogue GWTC-2.1 by the LIGO-Virgo collaboration, sub-threshold gravitational wave (GW) candidates are publicly available. They are expected to be released in real-time as well, in the upcoming O4 run. Using these GW candidates for multi-messenger studies complement the ongoing efforts to identify neutrino counterparts to GW events. This in turn, allows us to schedule electromagnetic follow-up searches more efficiently. However, the definition and criteria for sub-threshold candidates are pretty flexible. Finding a multi-messenger counterpart via archival studies for these candidates will help to set up strong bounds on the GW parameters which are useful for defining a GW signal as sub-threshold, thereby increasing their significance for scheduling follow-up searches. Here, we present the current status of this ongoing work with the IceCube Neutrino Observatory. We perform a selection of the sub-threshold GW candidates from GWTC-2.1 and conduct an archival search for sub-TeV neutrino counterparts detected by the dense infill array of the IceCube Neutrino Observatory, known as "DeepCore". For this, an Unbinned Maximum Likelihood (UML) method is used. We report the 90% C.L. sensitivities of this sub-TeV neutrino dataset for each selected sub-threshold GW candidate, considering the spatial and temporal correlation between the GW and neutrino events within a 1000 s time window

    Conditional normalizing flows for IceCube event reconstruction

    Get PDF
    corecore