1,734 research outputs found

    Time Dependent Modeling of the Markarian 501 X-ray and TeV Gamma-Ray Data Taken During March and April, 1997

    Get PDF
    If the high-energy emission from TeV blazars is produced by the Synchrotron Self-Compton (SSC) mechanism, then simultaneous X-ray and Gamma-ray observations of these objects are a powerful probe of the electron (and/or positron) populations responsible for this emission. Understanding the emitting particle distributions and their evolution in turn allow us to probe physical conditions in the inner blazar jet and test, for example, various acceleration scenarios. By constraining the SSC emission model parameters, such observations also allow us to predict the intrinsic (unabsorbed) Gamma-ray spectra of these sources, a major uncertainty in current attempts to use the observed Gamma-ray spectra to constrain the intensity of the extragalactic background at optical/infrared wavelengths. As a next step in testing the SSC model and as a demonstration of the potential power of coordinated X-ray and Gamma-ray observations, we attempt to model in detail the X-ray and Gamma-ray light curves of the TeV Blazar Mrk 501 during its April-May 1997 outburst using a time dependent SSC emission model. Extensive, quasi-simultaneous X-ray and gamma-ray coverage exists for this period. We discuss and explore quantitatively several of the flare scenarios presented in the literature. We show that simple two-component models (with a soft, steady X-ray component plus a variable SSC component) involving substantial pre-acceleration of electrons to Lorentz factors on the order of 1E+5 describe the data train surprisingly well. All considered models imply an emission region that is strongly out of equipartition and low radiative efficiencies (ratio between kinetic jet luminosity and comoving radiative luminosity) of 1 per-mill and less.Comment: 16 pages, Refereed Manuscript. Minor changes to previous versio

    Galactic Models of Gamma-Ray Bursts

    Get PDF
    We describe observational evidence and theoretical calculations which support the high velocity neutron star model of gamma-ray bursts. We estimate the energetic requirements in this model, and discuss possible energy sources. we also consider radiative processes involved in the bursts.Comment: 16 pages Latex file in revtex format. Fourteen postscript figures come in a separate file. To appear in the Proceedings of the 1995 La Jolla Workshop "High Velocity Neutron Stars and Gamma-Ray Bursts", eds. R. Rorschild etal., AIP, New Yor

    Closure Relations for Electron-Positron Pair-Signatures in Gamma-Ray Bursts

    Full text link
    We present recipes to diagnose the fireball of gamma-ray bursts (GRBs) by combining observations of electron-positron pair-signatures (the pair-annihilation line and the cutoff energy due to the pair-creation process). Our recipes are largely model-independent and extract information even from the non-detection of either pair-signature. We evaluate physical quantities such as the Lorentz factor, optical depth and pair-to-baryon ratio, only from the observable quantities. In particular, we can test whether the prompt emission of GRBs comes from the pair/baryonic photosphere or not. The future-coming Gamma-Ray Large Area Space Telescope (GLAST) satellite will provide us with good chances to use our recipes by detecting or non-detecting pair-signatures.Comment: 7 pages, 4 figures, accepted for publication in ApJ, with extended discussions. Conclusions unchange

    Time dependent numerical model for the emission of radiation from relativistic plasma

    Full text link
    We describe a numerical model constructed for the study of the emission of radiation from relativistic plasma under conditions characteristic, e.g., to gamma-ray bursts (GRB's) and active galactic nuclei (AGN's). The model solves self consistently the kinetic equations for e^\pm and photons, describing cyclo-synchrotron emission, direct Compton and inverse Compton scattering, pair production and annihilation, including the evolution of high energy electromagnetic cascades. The code allows calculations over a wide range of particle energies, spanning more than 15 orders of magnitude in energy and time scales. Our unique algorithm, which enables to follow the particle distributions over a wide energy range, allows to accurately derive spectra at high energies, >100 \TeV. We present the kinetic equations that are being solved, detailed description of the equations describing the various physical processes, the solution method, and several examples of numerical results. Excellent agreement with analytical results of the synchrotron-SSC model is found for parameter space regions in which this approximation is valid, and several examples are presented of calculations for parameter space regions where analytic results are not available.Comment: Minor changes; References added, discussion on observational status added. Accepted for publication in Ap.

    Witnessing the gradual slow-down of powerful extragalactic jets: The X-ray -- optical -- radio connection

    Full text link
    A puzzling feature of the {\it Chandra}--detected quasar jets is that their X-ray emission decreases faster along the jet than their radio emission, resulting to an outward increasing radio to X-ray ratio. In some sources this behavior is so extreme that the radio emission peak is located clearly downstream of that of the X-rays. This is a rather unanticipated behavior given that the inverse Compton nature of the X-rays and the synchrotron radio emission are attributed to roughly the same electrons of the jet's non-thermal electron distribution. In this note we show that this morphological behavior can result from the gradual deceleration of a relativistic flow and that the offsets in peak emission at different wavelengths carry the imprint of this deceleration. This notion is consistent with another recent finding, namely that the jets feeding the terminal hot spots of powerful radio galaxies and quasars are still relativistic with Lorentz factors Γ23\Gamma \sim 2-3. The picture of the kinematics of powerful jets emerging from these considerations is that they remain relativistic as they gradually decelerate from Kpc scales to the hot spots, where, in a final collision with the intergalactic medium, they slow-down rapidly to the subrelativistic velocities of the hot spot advance speed.Comment: Submitted in ApJ Letters on Jan. 14, 200

    Reduced magnetohydrodynamic theory of oblique plasmoid instabilities

    Full text link
    The three-dimensional nature of plasmoid instabilities is studied using the reduced magnetohydrodynamic equations. For a Harris equilibrium with guide field, represented by \vc{B}_o = B_{po} \tanh (x/\lambda) \hat{y} + B_{zo} \hat{z}, a spectrum of modes are unstable at multiple resonant surfaces in the current sheet, rather than just the null surface of the polodial field Byo(x)=Bpotanh(x/λ)B_{yo} (x) = B_{po} \tanh (x/\lambda), which is the only resonant surface in 2D or in the absence of a guide field. Here BpoB_{po} is the asymptotic value of the equilibrium poloidal field, BzoB_{zo} is the constant equilibrium guide field, and λ\lambda is the current sheet width. Plasmoids on each resonant surface have a unique angle of obliquity θarctan(kz/ky)\theta \equiv \arctan(k_z/k_y). The resonant surface location for angle θ\theta is x_s = - \lambda \arctanh (\tan \theta B_{zo}/B_{po}), and the existence of a resonant surface requires θ<arctan(Bpo/Bzo)|\theta| < \arctan (B_{po} / B_{zo}). The most unstable angle is oblique, i.e. θ0\theta \neq 0 and xs0x_s \neq 0, in the constant-ψ\psi regime, but parallel, i.e. θ=0\theta = 0 and xs=0x_s = 0, in the nonconstant-ψ\psi regime. For a fixed angle of obliquity, the most unstable wavenumber lies at the intersection of the constant-ψ\psi and nonconstant-ψ\psi regimes. The growth rate of this mode is γmax/ΓoSL1/4(1μ4)1/2\gamma_{\textrm{max}}/\Gamma_o \simeq S_L^{1/4} (1-\mu^4)^{1/2}, in which Γo=VA/L\Gamma_o = V_A/L, VAV_A is the Alfv\'{e}n speed, LL is the current sheet length, and SLS_L is the Lundquist number. The number of plasmoids scales as NSL3/8(1μ2)1/4(1+μ2)3/4N \sim S_L^{3/8} (1-\mu^2)^{-1/4} (1 + \mu^2)^{3/4}.Comment: 9 pages, 8 figures, to be published in Physics of Plasma
    corecore