28 research outputs found

    Scale invariance and universality of force networks in static granular matter

    Full text link
    Force networks form the skeleton of static granular matter. They are the key ingredient to mechanical properties, such as stability, elasticity and sound transmission, which are of utmost importance for civil engineering and industrial processing. Previous studies have focused on the global structure of external forces (the boundary condition), and on the probability distribution of individual contact forces. The disordered spatial structure of the force network, however, has remained elusive so far. Here we report evidence for scale invariance of clusters of particles that interact via relatively strong forces. We analyzed granular packings generated by molecular dynamics simulations mimicking real granular matter; despite the visual variation, force networks for various values of the confining pressure and other parameters have identical scaling exponents and scaling function, and thus determine a universality class. Remarkably, the flat ensemble of force configurations--a simple generalization of equilibrium statistical mechanics--belongs to the same universality class, while some widely studied simplified models do not.Comment: 15 pages, 4 figures; to appear in Natur

    Boolean Dynamics with Random Couplings

    Full text link
    This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the sizes of their basins of attraction, and the flow of information through the systems. In the limit of infinite N, there is a phase transition between a chaotic and an ordered phase, with a critical phase in between. We argue that the behavior of this system depends significantly on the topology of the network connections. If the elements are placed upon a lattice with dimension d, the system shows correlations related to the standard percolation or directed percolation phase transition on such a lattice. On the other hand, a very different behavior is seen in the Kauffman net in which all spins are equally likely to be coupled to a given spin. In this situation, coupling loops are mostly suppressed, and the behavior of the system is much more like that of a mean field theory. We also describe possible applications of the models to, for example, genetic networks, cell differentiation, evolution, democracy in social systems and neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical Sciences Serie

    Phase transitions and memory effects in the dynamics of Boolean networks

    Get PDF
    The generating functional method is employed to investigate the synchronous dynamics of Boolean networks, providing an exact result for the system dynamics via a set of macroscopic order parameters. The topology of the networks studied and its constituent Boolean functions represent the system's quenched disorder and are sampled from a given distribution. The framework accommodates a variety of topologies and Boolean function distributions and can be used to study both the noisy and noiseless regimes; it enables one to calculate correlation functions at different times that are inaccessible via commonly used approximations. It is also used to determine conditions for the annealed approximation to be valid, explore phases of the system under different levels of noise and obtain results for models with strong memory effects, where existing approximations break down. Links between BN and general Boolean formulas are identified and common results to both system types are highlighted

    Nanofriction in Cold Ion Traps

    Get PDF
    Sliding friction between crystal lattices and the physics of cold ion traps are so far non-overlapping fields. Two sliding lattices may either stick and show static friction or slip with dynamic friction; cold ions are known to form static chains, helices, or clusters, depending on trapping conditions. Here we show, based on simulations, that much could be learnt about friction by sliding, via e.g. an electric field, the trapped ion chains over a periodic corrugated potential. Unlike infinite chains where, according to theory, the classic Aubry transition to free sliding may take place, trapped chains are always pinned. Nonetheless we find that a properly defined static friction still vanishes Aubry-like at a symmetric-asymmetric structural transition, ubiquitous for decreasing corrugation in both straight and zig-zag trapped chains. Dynamic friction can also be addressed by ringdown oscillations of the ion trap. Long theorized static and dynamic one dimensional friction phenomena could thus become exquisitely accessible in future cold ion tribology

    Crackling Noise

    Full text link
    Crackling noise arises when a system responds to changing external conditions through discrete, impulsive events spanning a broad range of sizes. A wide variety of physical systems exhibiting crackling noise have been studied, from earthquakes on faults to paper crumpling. Because these systems exhibit regular behavior over many decades of sizes, their behavior is likely independent of microscopic and macroscopic details, and progress can be made by the use of very simple models. The fact that simple models and real systems can share the same behavior on a wide range of scales is called universality. We illustrate these ideas using results for our model of crackling noise in magnets, explaining the use of the renormalization group and scaling collapses. This field is still developing: we describe a number of continuing challenges

    Multicontact Dynamics

    No full text
    corecore