643 research outputs found
Nonequilibrium evolution of Phi**4 theory in 1+1 dimensions in the 2PPI formalism
We consider the out-of-equilibrium evolution of a classical condensate field
and its quantum fluctuations for a Phi**4 model in 1+1 dimensions with a
symmetric and a double well potential. We use the 2PPI formalism and go beyond
the Hartree approximation by including the sunset term. In addition to the mean
field phi= the 2PPI formalism uses as variational parameter a time
dependent mass M**2(t) which contains all local insertions into the Green
function. We compare our results to those obtained in the Hartree
approximation. In the symmetric Phi**4 theory we observe that the mean field
shows a stronger dissipation than the one found in the Hartree approximation.
The dissipation is roughly exponential in an intermediate time region. In the
theory with spontaneous symmetry breaking, i.e., with a double well potential,
the field amplitude tends to zero, i.e., to the symmetric configuration. This
is expected on general grounds: in 1+1 dimensional quantum field theory there
is no spontaneous symmetry breaking for T >0, and so there should be none at
finite energy density (microcanonical ensemble), either. Within the time range
of our simulations the momentum spectra do not thermalize and display
parametric resonance bands.Comment: 14 pages, 18 encapsulated postscript figures; v2 minor changes, new
appendix, accepted for publication in Phys.Rev.
Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton and
quasi-elastic electron-deuteron scattering at Q^2 = 0.22 and 0.63 GeV^2. They
are sensitive to strange quark contributions to currents in the nucleon, and to
the nucleon axial current. The results indicate strange quark contributions of
< 10% of the charge and magnetic nucleon form factors at these four-momentum
transfers. We also present the first measurement of anapole moment effects in
the axial current at these four-momentum transfers.Comment: 5 pages, 2 figures, changed references, typo, and conten
Out-of-equilibrium evolution of quantum fields in the hybrid model with quantum back reaction
The hybrid model with a scalar "inflaton" field coupled to a "Higgs" field
with a broken symmetry potential is one of the promising models for inflation
and (p)reheating after inflation. We consider the nonequilibrium evolution of
the quantum fields of this model with quantum back reaction in the Hartree
approximation, in particular the transition of the Higgs field from the
metastable "false vacuum" to the broken symmetry phase. We have performed the
renormalization of the equations of motion, of the gap equations and of the
energy density, using dimensional regularization. We study the influence of the
back reaction on the evolution of the classical fields and of the quantum
fluctuations. We observe that back reaction plays an important role over a wide
range of parameters. Some implications of our investigation for the preheating
stage after cosmic inflation are presented.Comment: 35 pages, 16 eps figures, revtex4; v2: typos corrected and references
added, accepted for publication in Physical Review
The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission
1Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs− parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs− parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito
Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasi-elastic Electron-Deuteron Scattering
We have measured the beam-normal single-spin asymmetries in elastic
scattering of transversely polarized electrons from the proton, and performed
the first measurement in quasi-elastic scattering on the deuteron, at backward
angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63
GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry
arises due to the imaginary part of the interference of the two-photon exchange
amplitude with that of single photon exchange. Results for the proton are
consistent with a model calculation which includes inelastic intermediate
hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for
the scattering from the neutron is made using a quasi-static deuterium
approximation, and is also in agreement with theory
Time-resolved single-crystal X-ray crystallography
In this chapter the development of time-resolved crystallography is traced from its beginnings more than 30 years ago. The importance of being able to “watch” chemical processes as they occur rather than just being limited to three-dimensional pictures of the reactant and final product is emphasised, and time-resolved crystallography provides the opportunity to bring the dimension of time into the crystallographic experiment. The technique has evolved in time with developments in technology: synchrotron radiation, cryoscopic techniques, tuneable lasers, increased computing power and vastly improved X-ray detectors. The shorter the lifetime of the species being studied, the more complex is the experiment. The chapter focusses on the results of solid-state reactions that are activated by light, since this process does not require the addition of a reagent to the crystalline material and the single-crystalline nature of the solid may be preserved. Because of this photoactivation, time-resolved crystallography is often described as “photocrystallography”. The initial photocrystallographic studies were carried out on molecular complexes that either underwent irreversible photoactivated processes where the conversion took hours or days. Structural snapshots were taken during the process. Materials that achieved a metastable state under photoactivation and the excited (metastable) state had a long enough lifetime for the data from the crystal to be collected and the structure solved. For systems with shorter lifetimes, the first time-resolved results were obtained for macromolecular structures, where pulsed lasers were used to pump up the short lifetime excited state species and their structures were probed by using synchronised X-ray pulses from a high-intensity source. Developments in molecular crystallography soon followed, initially with monochromatic X-ray radiation, and pump-probe techniques were used to establish the structures of photoactivated molecules with lifetimes in the micro- to millisecond range. For molecules with even shorter lifetimes in the sub-microsecond range, Laue diffraction methods (rather than using monochromatic radiation) were employed to speed up the data collections and reduce crystal damage. Future developments in time-resolved crystallography are likely to involve the use of XFELs to complete “single-shot” time-resolved diffraction studies that are already proving successful in the macromolecular crystallographic field.</p
Searches at HERA for Squarks in R-Parity Violating Supersymmetry
A search for squarks in R-parity violating supersymmetry is performed in e^+p
collisions at HERA at a centre of mass energy of 300 GeV, using H1 data
corresponding to an integrated luminosity of 37 pb^(-1). The direct production
of single squarks of any generation in positron-quark fusion via a Yukawa
coupling lambda' is considered, taking into account R-parity violating and
conserving decays of the squarks. No significant deviation from the Standard
Model expectation is found. The results are interpreted in terms of constraints
within the Minimal Supersymmetric Standard Model (MSSM), the constrained MSSM
and the minimal Supergravity model, and their sensitivity to the model
parameters is studied in detail. For a Yukawa coupling of electromagnetic
strength, squark masses below 260 GeV are excluded at 95% confidence level in a
large part of the parameter space. For a 100 times smaller coupling strength
masses up to 182 GeV are excluded.Comment: 32 pages, 14 figures, 3 table
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s
A precise measurement of the inclusive deep-inelastic e^+p scattering cross
section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and
3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in
1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The
double differential cross section, from which the proton structure function
F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is
measured with typically 1% statistical and 3% systematic uncertainties. The
measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise
continuously towards small x for fixed Q^2. The cross section data are combined
with published H1 measurements at high Q^2 for a next-to-leading order DGLAP
QCD analysis.The H1 data determine the gluon momentum distribution in the range
3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20
GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS
collaboration allows the strong coupling constant alpha_s and the gluon
distribution to be simultaneously determined. A value of alpha
_s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with
an additional theoretical uncertainty of about +-0.005, mainly due to the
uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table
- …