1,155 research outputs found

    A Signal-To-Noise Ratio Comparison fo Ultrasonic Transducers for C-Scan Imaging in Titanium

    Get PDF
    Digital data acquisition and the C-scan imaging of ultrasonic data offer improvements over analog recording techniques, such as strip-chart recording. As a result, peak-detected C-scan imaging is becoming the preferred method for the inspection of large titanium parts such as those found in the aircraft engine industry. The effectiveness of the inspection, however, still depends on the transducer. For this reason, a study of the effect of different transducer parameters on the sensitivity for detection of simulated defects in titanium specimens was conducted. Due to the increased emphasis on C-scan imaging, sensitivity is measured as an image-based signal-to-noise ratio

    Revisiting Static and Dynamic Spin Ice Correlations in Ho2Ti2O7

    Full text link
    Elastic and inelastic neutron scattering studies have been carried out on the pyrochlore magnet Ho2Ti2O7. Measurements in zero applied magnetic field show that the disordered spin ice ground state of Ho2Ti2O7 is characterized by a pattern of rectangular diffuse elastic scattering within the [HHL] plane of reciprocal space, which closely resembles the zone boundary scattering seen in its sister compound Dy2Ti2O7. Well-defined peaks in the zone boundary scattering develop only within the spin ice ground state below ~ 2 K. In contrast, the overall diffuse scattering pattern evolves on a much higher temperature scale of ~ 17 K. The diffuse scattering at small wavevectors below [001] is found to vanish on going to Q=0, an explicit signature of expectations for dipolar spin ice. Very high energy-resolution inelastic measurements reveal that the spin ice ground state below ~ 2 K is also characterized by a transition from dynamic to static spin correlations on the time scale of 10^{-9} seconds. Measurements in a magnetic field applied along the [11ˉ{\bar1}0] direction in zero-field cooled conditions show that the system can be broken up into orthogonal sets of polarized alpha chains along [11ˉ{\bar1}0] and quasi-one-dimensional beta chains along [110]. Three dimensional correlations between beta chains are shown to be very sensitive to the precise alignment of the [11ˉ{\bar1}0] externally applied magnetic field.Comment: 11 pages, 10 figures. Submitted for publicatio

    A Neutron Elastic Diffuse Scattering Study of PMN

    Full text link
    We have performed elastic diffuse neutron scattering studies on the relaxor Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3 (PMN). The measured intensity distribution near a (100) Bragg peak in the (hk0) scattering plane assumes the shape of a butterfly with extended intensity in the (110) and (11ˉ\bar{1}0) directions. The temperature dependence of the diffuse scattering shows that both the size of the polar nanoregions (PNR) and the integrated diffuse intensity increase with cooling even for temperatures below the Curie temperature TC213T_C \sim 213 K.Comment: Submitted to PR

    ROTATIONAL-DYNAMICS OF SOLID C-70 - A NEUTRON-SCATTERING STUDY

    Get PDF
    PMID: 10011126PMID: 10011126 This work at the University of Sussex at supported by the Science and Engineering Research Council, U.K.PMID: 10011126 This work at the University of Sussex at supported by the Science and Engineering Research Council, U.K.PMID: 10011126 This work at the University of Sussex at supported by the Science and Engineering Research Council, U.K.We report the results of neutron-diffraction and low-energy neutron-inelastic-scattering experiments on high-purity solid C-70 between 10 and 640 K. Thermal hysteresis effects are found to accompany structural changes both on cooling and on heating. The observed diffuse scattering intensity does not change with temperature. At 10 K broad librational peaks are observed at 1.82(16) meV [full width at half maximum=1.8(5) meV]. The peaks soften and broaden further with increasing temperature. At and above room temperature, they collapse into a single quasielastic line. At 300 K, the diffusive reorientational motion appears to be somewhat anisotropic, becoming less so with increasing temperature. An isotropic rotational diffusion model, in which the motions of adjacent molecules are uncorrelated, describes well the results at 525 K. The temperature dependence of the rotational diffusion constants is consistent with a thermally activated process having an activation energy of 32(7) meV.This work at the University of Sussex at supported by the Science and Engineering Research Council, U.K

    High Resolution Study of Spin Excitations in the Shastry-Sutherland Singlet Ground State of SrCu2(BO3)2

    Full text link
    High resolution, inelastic neutron scattering measurements on SrCu2(BO3)2 reveal the dispersion of the three single triplet excitations continuously across the (H,0) direction within its tetragonal basal plane. These measurements also show distinct Q dependencies for the single and multiple triplet excitations, and that these excitations are largely dispersionless perpendicular to this plane. The temperature dependence of the intensities of these excitations is well described as the complement of the dc-susceptibility of SrCu2(BO3)2.Comment: 4 pages, 4 figures. Submitted to PR

    A Bjorken sum rule for semileptonic Ωb\Omega_b decays to ground and excited charmed baryon states

    Full text link
    We derive a Bjorken sum rule for semileptonic Ωb\Omega_b decays to ground and low-lying negative-parity excited charmed baryon states, in the heavy quark limit. We discuss the restriction from this sum rule on form factors and compare it with some models.Comment: 10 pages, RevTex, no figure, Alberta Thy--26--9

    Nano-magnetic droplets and implications to orbital ordering in La1-xSrxCoO3

    Get PDF
    Inelastic cold neutron scattering on LaCoO3 provided evidence for a distinct low energy excitation at 0.6 meV coincident with the thermally induced magnetic transition. Coexisting strong ferromagnetic (FM) and weaker antiferromagnetic (AFM) correlations that are dynamic follow the activation to the excited state, identified as the intermediate S=1 spin triplet. This is indicative of dynamical orbital ordering favoring the observed magnetic interactions. With hole doping as in La1-xSrxCoO3, the FM correlations between Co spins become static and isotropically distributed due to the formation of FM droplets. The correlation length and condensation temperature of these droplets increase rapidly with metallicity due to the double exchange mechanism.Comment: To appear in Phys. Rev. Let

    Neutron scattering and scaling behavior in URu2Zn20 and YbFe2Zn20

    Get PDF
    The dynamic susceptibility chi"(deltaE), measured by inelastic neutron scattering measurements, shows a broad peak centered at Emax = 16.5 meV for the cubic actinide compound URu2Zn20 and 7 meV at the (1/2, 1/2, 1/2) zone boundary for the rare earth counterpart compound YbFe2Zn20. For URu2Zn20, the low temperature susceptibility and magnetic specific heat coefficient gamma = Cmag/T take the values chi = 0.011 emu/mole and gamma = 190 mJ/mole-K2 at T = 2 K. These values are roughly three times smaller, and Emax is three times larger, than recently reported for the related compound UCo2Zn20, so that chi and gamma scale inversely with the characteristic energy for spin fluctuations, Tsf = Emax/kB. While chi(T), Cmag(T), and Emax of the 4f compound YbFe2Zn20 are very well described by the Kondo impurity model, we show that the model works poorly for URu2Zn20 and UCo2Zn20, suggesting that the scaling behavior of the actinide compounds arises from spin fluctuations of itinerant 5f electrons.Comment: 7 pages, 5 figure
    corecore