The dynamic susceptibility chi"(deltaE), measured by inelastic neutron
scattering measurements, shows a broad peak centered at Emax = 16.5 meV for the
cubic actinide compound URu2Zn20 and 7 meV at the (1/2, 1/2, 1/2) zone boundary
for the rare earth counterpart compound YbFe2Zn20. For URu2Zn20, the low
temperature susceptibility and magnetic specific heat coefficient gamma =
Cmag/T take the values chi = 0.011 emu/mole and gamma = 190 mJ/mole-K2 at T = 2
K. These values are roughly three times smaller, and Emax is three times
larger, than recently reported for the related compound UCo2Zn20, so that chi
and gamma scale inversely with the characteristic energy for spin fluctuations,
Tsf = Emax/kB. While chi(T), Cmag(T), and Emax of the 4f compound YbFe2Zn20 are
very well described by the Kondo impurity model, we show that the model works
poorly for URu2Zn20 and UCo2Zn20, suggesting that the scaling behavior of the
actinide compounds arises from spin fluctuations of itinerant 5f electrons.Comment: 7 pages, 5 figure