396 research outputs found

    Megathrust Heterogeneity, Crustal Accretion, and a Topographic Embayment in the Western Nepal Himalaya : Insights From the Inversion of Thermochronological Data

    Get PDF
    Between 81 degrees 30MODIFIER LETTER PRIMEE and 83 degrees E, the Himalayan range's "perfect" arcuate shape is interrupted by an embayment. We hypothesize that thrust geometry and duplexing along the megathrust at midlower-crustal depths play a leading role in growth of the embayment as well the southern margin of the Tibetan plateau. To test this hypothesis, we conducted thermokinematic modeling of published thermochronologic data from the topographic and structural embayment in the western Nepal Himalaya to investigate the three-dimensional geometry and kinematics of the megathrust at midlower-crustal depths. Models that can best reproduce observed cooling ages suggest that the megathrust in the western Nepal Himalaya is best described as two ramps connected by a long flat that extends further north than in segments to the east and west. These models suggest that the high-slope zone along the embayment lies above the foreland limb of an antiformal crustal accretion zone on the megathrust with lateral and oblique ramps at midlower-crustal depths. The lateral and oblique ramps may have initiated by ca. 10 Ma. This process may have controlled along-strike variation in Himalayan-plateau growth and therefore development of the topographic embayment. Finally, we analyze geological and morphologic features and propose an evolution model in which landscape and drainage systems across the central-western Himalaya evolve in response to crustal accretion at depth and the three-dimensional geometry of the megathrust. Our work highlights the importance of crustal accretion at different depths in orogenic-wedge growth and that the midlower crustal accretion determines the location of plateau edge.Peer reviewe

    Transmission of 'Candidatus Anaplasma camelii' to mice and rabbits by camel-specific keds, Hippobosca camelina.

    Get PDF
    Anaplasmosis, caused by infection with bacteria of the genus Anaplasma, is an important veterinary and zoonotic disease. Transmission by ticks has been characterized but little is known about non-tick vectors of livestock anaplasmosis. This study investigated the presence of Anaplasma spp. in camels in northern Kenya and whether the hematophagous camel ked, Hippobosca camelina, acts as a vector. Camels (n = 976) and > 10,000 keds were sampled over a three-year study period and the presence of Anaplasma species was determined by PCR-based assays targeting the Anaplasmataceae 16S rRNA gene. Camels were infected by a single species of Anaplasma, 'Candidatus Anaplasma camelii', with infection rates ranging from 63-78% during the dry (September 2017), wet (June-July 2018), and late wet seasons (July-August 2019). 10-29% of camel keds harbored 'Ca. Anaplasma camelii' acquired from infected camels during blood feeding. We determined that Anaplasma-positive camel keds could transmit 'Ca. Anaplasma camelii' to mice and rabbits via blood-feeding. We show competence in pathogen transmission and subsequent infection in mice and rabbits by microscopic observation in blood smears and by PCR. Transmission of 'Ca. Anaplasma camelii' to mice (8-47%) and rabbits (25%) occurred readily after ked bites. Hence, we demonstrate, for the first time, the potential of H. camelina as a vector of anaplasmosis. This key finding provides the rationale for establishing ked control programmes for improvement of livestock and human health

    Some FRW Models of Accelerating Universe with Dark Energy

    Full text link
    The paper deals with a spatially homogeneous and isotropic FRW space-time filled with perfect fluid and dark energy components. The two sources are assumed to interact minimally, and therefore their energy momentum tensors are conserved separately. A special law of variation for the Hubble parameter proposed by Berman (1983) has been utilized to solve the field equations. The Berman's law yields two explicit forms of the scale factor governing the FRW space-time and constant values of deceleration parameter. The role of dark energy with variable equation of state parameter has been studied in detail in the evolution of FRW universe. It has been found that dark energy dominates the universe at the present epoch, which is consistent with the observations. The physical behavior of the universe is discussed in detail.Comment: 10 pages, 5 figure

    Desensitizing Inflation from the Planck Scale

    Full text link
    A new mechanism to control Planck-scale corrections to the inflationary eta parameter is proposed. A common approach to the eta problem is to impose a shift symmetry on the inflaton field. However, this symmetry has to remain unbroken by Planck-scale effects, which is a rather strong requirement on possible ultraviolet completions of the theory. In this paper, we show that the breaking of the shift symmetry by Planck-scale corrections can be systematically suppressed if the inflaton field interacts with a conformal sector. The inflaton then receives an anomalous dimension in the conformal field theory, which leads to sequestering of all dangerous high-energy corrections. We analyze a number of models where the mechanism can be seen in action. In our most detailed example we compute the exact anomalous dimensions via a-maximization and show that the eta problem can be solved using only weakly-coupled physics.Comment: 34 pages, 3 figures

    Non-minimal kinetic coupling and Chaplygin gas cosmology

    Full text link
    In the frame of the scalar field model with non minimal kinetic coupling to gravity, we study the cosmological solutions of the Chaplygin gas model of dark energy. By appropriately restricting the potential, we found the scalar field, the potential and coupling giving rise to the Chaplygin gas solution. Extensions to the generalized and modified Chaplygin gas have been made.Comment: 18 pages, 2 figures. To appear in EPJ

    Dynamics of coupled bosonic systems with applications to preheating

    Get PDF
    Coupled, multi-field models of inflation can provide several attractive features unavailable in the case of a single inflaton field. These models have a rich dynamical structure resulting from the interaction of the fields and their associated fluctuations. We present a formalism to study the nonequilibrium dynamics of coupled scalar fields. This formalism solves the problem of renormalizing interacting models in a transparent way using dimensional regularization. The evolution is generated by a renormalized effective Lagrangian which incorporates the dynamics of the mean fields and their associated fluctuations at one-loop order. We apply our method to two problems of physical interest: (i) a simple two-field model which exemplifies applications to reheating in inflation, and (ii) a supersymmetric hybrid inflation model. This second case is interesting because inflation terminates via a smooth phase transition which gives rise to a spinodal instability in one of the fields. We study the evolution of the zero mode of the fields and the energy density transfer to the fluctuations from the mean fields. We conclude that back reaction effects can be significant over a wide parameter range. In particular for the supersymmetric hybrid model we find that particle production can be suppressed due to these effects.Comment: 23 pages, 16 eps-figures, minor changes in the text, references added, accepted for publication in PR

    Warped Tachyonic Inflation in Type IIB Flux Compactifications and the Open-String Completeness Conjecture

    Full text link
    We consider a cosmological scenario within the KKLT framework for moduli stabilization in string theory. The universal open string tachyon of decaying non-BPS D-brane configurations is proposed to drive eternal topological inflation. Flux-induced `warping' can provide the small slow-roll parameters needed for successful inflation. Constraints on the parameter space leading to sufficient number of e-folds, exit from inflation, density perturbations and stabilization of the Kahler modulus are investigated. The conditions are difficult to satisfy in Klebanov-Strassler throats but can be satisfied in T^3 fibrations and other generic Calabi-Yau manifolds. This requires large volume and magnetic fluxes on the D-brane. The end of inflation may or may not lead to cosmic strings depending on the original non-BPS configuration. A careful investigation of initial conditions leading to a phenomenologically viable model for inflation is carried out. The initial conditions are chosen on the basis of Sen's open string completeness conjecture. We find time symmetrical bounce solutions without initial singularities for k=1 FRW models which are correlated with an inflationary period. Singular big-bang/big-crunch solutions also exist but do not lead to inflation. There is an intriguing correlation between having an inflationary universe in 4 dimensions and 6 compact dimensions or a big-crunch singularity and decompactification.Comment: 43 pages, 9 figures. v3: Typos correcte

    Pregnancy Recruitment for Population Research: the National Children's Study Vanguard Experience in W ayne C ounty, M ichigan

    Full text link
    Background To obtain a probability sample of pregnancies, the N ational C hildren's S tudy conducted door‐to‐door recruitment in randomly selected neighbourhoods in randomly selected counties in 2009–10. In 2011, an experiment was conducted in 10 US counties, in which the two‐stage geographic sample was maintained, but participants were recruited in prenatal care provider offices. We describe our experience recruiting pregnant women this way in W ayne C ounty, M ichigan, a county where geographically eligible women attended 147 prenatal care settings, and comprised just 2% of total county pregnancies. Methods After screening for address eligibility in prenatal care offices, we used a three‐part recruitment process: (1) providers obtained permission for us to contact eligible patients, (2) clinical research staff described the study to women in clinical settings, and (3) survey research staff visited the home to consent and interview eligible women. Results We screened 34 065 addresses in 67 provider settings to find 215 eligible women. Providers obtained permission for research contact from 81.4% of eligible women, of whom 92.5% agreed to a home visit. All home‐visited women consented, giving a net enrolment of 75%. From birth certificates, we estimate that 30% of eligible county pregnancies were enrolled, reaching 40–50% in the final recruitment months. Conclusions We recruited a high fraction of pregnancies identified in a broad cross‐section of provider offices. Nonetheless, because of time and resource constraints, we could enrol only a fraction of geographically eligible pregnancies. Our experience suggests that the probability sampling of pregnancies for research could be more efficiently achieved through sampling of providers rather than households.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97525/1/ppe12047.pd

    Bianchi type I space and the stability of inflationary Friedmann-Robertson-Walker space

    Full text link
    Stability analysis of the Bianchi type I universe in pure gravity theory is studied in details. We first derive the non-redundant field equation of the system by introducing the generalized Bianchi type I metric. This non-redundant equation reduces to the Friedmann equation in the isotropic limit. It is shown further that any unstable mode of the isotropic perturbation with respect to a de Sitter background is also unstable with respect to anisotropic perturbations. Implications to the choice of physical theories are discussed in details in this paper.Comment: 5 pages, some comment adde

    Probing Planckian physics: resonant production of particles during inflation and features in the primordial power spectrum

    Get PDF
    The phenomenon of resonant production of particles {\it after} inflation has received much attention in the past few years. In a new application of resonant production of particles, we consider the effect of a resonance {\em during} inflation. We show that if the inflaton is coupled to a massive particle, resonant production of the particle during inflation modifies the evolution of the inflaton, and may leave an imprint in the form of sharp features in the primordial power spectrum. Precision measurements of microwave background anisotropies and large-scale structure surveys could be sensitive to the features, and probe the spectrum of particles as massive as the Planck scale.Comment: 19 pages, 11 eps figure
    • 

    corecore