42 research outputs found

    A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre.

    Get PDF
    Following implantation, the human embryo undergoes major morphogenetic transformations that establish the future body plan. While the molecular events underpinning this process are established in mice, they remain unknown in humans. Here we characterise key events of human embryo morphogenesis, in the period between implantation and gastrulation, using single-cell analyses and functional studies. First, the embryonic epiblast cells transition through different pluripotent states and act as a source of FGF signals that ensure proliferation of both embryonic and extra-embryonic tissues. In a subset of embryos, we identify a group of asymmetrically positioned extra-embryonic hypoblast cells expressing inhibitors of BMP, NODAL and WNT signalling pathways. We suggest that this group of cells can act as the anterior singalling centre to pattern the epiblast. These results provide insights into pluripotency state transitions, the role of FGF signalling and the specification of anterior-posterior axis during human embryo development

    Tobacco smoking and somatic mutations in human bronchial epithelium

    Get PDF
    Tobacco smoking causes lung cancer, a process that is driven by more than 60 carcinogens in cigarette smoke that directly damage and mutate DNA. The profound effects of tobacco on the genome of lung cancer cells are well-documented, but equivalent data for normal bronchial cells are lacking. Here we sequenced whole genomes of 632 colonies derived from single bronchial epithelial cells across 16 subjects. Tobacco smoking was the major influence on mutational burden, typically adding from 1,000 to 10,000 mutations per cell; massively increasing the variance both within and between subjects; and generating several distinct mutational signatures of substitutions and of insertions and deletions. A population of cells in individuals with a history of smoking had mutational burdens that were equivalent to those expected for people who had never smoked: these cells had less damage from tobacco-specific mutational processes, were fourfold more frequent in ex-smokers than current smokers and had considerably longer telomeres than their more-mutated counterparts. Driver mutations increased in frequency with age, affecting 4–14% of cells in middle-aged subjects who had never smoked. In current smokers, at least 25% of cells carried driver mutations and 0–6% of cells had two or even three drivers. Thus, tobacco smoking increases mutational burden, cell-to-cell heterogeneity and driver mutations, but quitting promotes replenishment of the bronchial epithelium from mitotically quiescent cells that have avoided tobacco mutagenesis

    APOBEC mutagenesis is a common process in normal human small intestine

    Get PDF
    APOBEC mutational signatures SBS2 and SBS13 are common in many human cancer types. However, there is an incomplete understanding of its stimulus, when it occurs in the progression from normal to cancer cell and the APOBEC enzymes responsible. Here we whole-genome sequenced 342 microdissected normal epithelial crypts from the small intestines of 39 individuals and found that SBS2/SBS13 mutations were present in 17% of crypts, more frequent than most other normal tissues. Crypts with SBS2/SBS13 often had immediate crypt neighbors without SBS2/SBS13, suggesting that the underlying cause of SBS2/SBS13 is cell-intrinsic. APOBEC mutagenesis occurred in an episodic manner throughout the human lifespan, including in young children. APOBEC1 mRNA levels were very high in the small intestine epithelium, but low in the large intestine epithelium and other tissues. The results suggest that the high levels of SBS2/SBS13 in the small intestine are collateral damage from APOBEC1 fulfilling its physiological function of editing APOB mRNA. Whole-genome sequencing of healthy human epithelial crypts from the small intestines of 39 individuals highlights APOBEC enzymes as a common contributor to the overall mutational burden in this tissue.Peer reviewe

    Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours

    Get PDF
    Malignant rhabdoid tumour (MRT) is an often lethal childhood cancer that, like many paediatric tumours, is thought to arise from aberrant fetal development. The embryonic root and differentiation pathways underpinning MRT are not firmly established. Here, we study the origin of MRT by combining phylogenetic analyses and single-cell mRNA studies in patient-derived organoids. Comparison of somatic mutations shared between cancer and surrounding normal tissues places MRT in a lineage with neural crest-derived Schwann cells. Single-cell mRNA readouts of MRT differentiation, which we examine by reverting the genetic driver mutation underpinning MRT, SMARCB1 loss, suggest that cells are blocked en route to differentiating into mesenchyme. Quantitative transcriptional predictions indicate that combined HDAC and mTOR inhibition mimic MRT differentiation, which we confirm experimentally. Our study defines the developmental block of MRT and reveals potential differentiation therapies

    Targetable NOTCH1 rearrangements in reninoma

    Get PDF
    Reninomas are exceedingly rare renin-secreting kidney tumours that derive from juxtaglomerular cells, specialised smooth muscle cells that reside at the vascular inlet of glomeruli. They are the central component of the juxtaglomerular apparatus which controls systemic blood pressure through the secretion of renin. We assess somatic changes in reninoma and find structural variants that generate canonical activating rearrangements of, NOTCH1 whilst removing its negative regulator, NRARP. Accordingly, in single reninoma nuclei we observe excessive renin and NOTCH1 signalling mRNAs, with a concomitant non-excess of NRARP expression. Re-analysis of previously published reninoma bulk transcriptomes further corroborates our observation of dysregulated Notch pathway signalling in reninoma. Our findings reveal NOTCH1 rearrangements in reninoma, therapeutically targetable through existing NOTCH1 inhibitors, and indicate that unscheduled Notch signalling may be a disease-defining feature of reninoma

    Single cell derived mRNA signals across human kidney tumors.

    Get PDF
    Funder: Department of HealthTumor cells may share some patterns of gene expression with their cell of origin, providing clues into the differentiation state and origin of cancer. Here, we study the differentiation state and cellular origin of 1300 childhood and adult kidney tumors. Using single cell mRNA reference maps of normal tissues, we quantify reference "cellular signals" in each tumor. Quantifying global differentiation, we find that childhood tumors exhibit fetal cellular signals, replacing the presumption of "fetalness" with a quantitative measure of immaturity. By contrast, in adult cancers our assessment refutes the suggestion of dedifferentiation towards a fetal state in most cases. We find an intimate connection between developmental mesenchymal populations and childhood renal tumors. We demonstrate the diagnostic potential of our approach with a case study of a cryptic renal tumor. Our findings provide a cellular definition of human renal tumors through an approach that is broadly applicable to human cancer

    The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production

    Get PDF
    Abstract Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described

    Welke ondernemingskenmerken verklaren verschillen in winststuring tussen Nederlandse ondernemingen?

    No full text
    in deze scriptie wordt onderzoek gedaan naar de vraag of er in Nederland ook winststuring wordt toegepast. Daarbij wordt aandacht gegeven aan de bijbehorende management-theorieën, de motieven en de methoden en technieken

    The Automatic Quantification of Morphological Features of Pectus Excavatum Based on Three-Dimensional Images

    Get PDF
    Visual examination and quantification of severity are essential for clinical decision making in patients with pectus excavatum. Yet, visual assessment is prone to inter- and intra-observer variability and current quantitative methods are inadequate. This study aims to develop and evaluate a novel, automatic and non-invasive method to objectively quantify pectus excavatum morphology based on three-dimensional images. Key steps of the automatic analysis are normalization of image orientation, slicing, and computation of the morphological features encompassing pectus depth, width, length, volume, position, steepness, flaring, asymmetry and mean cross-sectional area. A digital phantom mimicking a patient with pectus excavatum was used to verify the analysis method. Prospective three-dimensional imaging and subsequent surface analysis in patients with pectus excavatum was performed to assess clinical feasibility. Verification of the developed analysis tool demonstrated 100% reproducibility of all morphological feature values. Calculated parameters compared to the predetermined phantom dimensions were accurate for all but four features. The pectus width, length, volume and steepness showed an error of 4 mm (4%), 2 mm (2%), 12 mL (5%) and 1 degree (3%), respectively. Prospective imaging of 52 patients (88% males) demonstrated the feasibility of the developed tool to quantify morphological features of pectus excavatum in the clinical setting. Mean duration to calculate all features in one patient was 7.6 seconds. We have developed and presented a non-invasive pectus excavatum surface analysis tool, that is feasible to automatically quantify morphological features based on three-dimensional images with promising accuracy and reproducibility
    corecore