55,442 research outputs found

    Spin 1 inversion: a Majorana tensor force for deuteron alpha scattering

    Get PDF
    We demonstrate, for the first time, successful S-matrix to potential inversion for spin one projectiles with non-diagonal Sll′jS^j_{ll'} yielding a TRT_{\rm R} interaction. The method is a generalization of the iterative-perturbative, IP, method. We present a test case indicating the degree of uniqueness of the potential. The method is adapted, using established procedures, into direct observable to potential inversion, fitting σ\sigma, iT11{\rm i}T_{11}, T20T_{20}, T21T_{21} and T22T_{22} for d + alpha scattering over a range of energies near 10 MeV. The TRT_{\rm R} interaction which we find is very different from that proposed elsewhere, both real and imaginary parts being very different for odd and even parity channels.Comment: 7 pages Revtex, 4 ps figure

    Isospectral Potentials from Modified Factorization

    Full text link
    Factorization of quantum mechanical potentials has a long history extending back to the earliest days of the subject. In the present paper, the non-uniqueness of the factorization is exploited to derive new isospectral non-singular potentials. Many one-parameter families of potentials can be generated from known potentials using a factorization that involves superpotentials defined in terms of excited states of a potential. For these cases an operator representation is available. If ladder operators are known for the original potential, then a straightforward procedure exists for defining such operators for its isospectral partners. The generality of the method is illustrated with a number of examples which may have many possible applications in atomic and molecular physics.Comment: 8 pages, 4 figure

    Combinations of antioxidants and/or of epigenetic enzyme inhibitors allow for enhanced collection of mouse bone marrow hematopoietic stem cells in ambient air

    Get PDF
    Hematopoietic cell transplantation (HCT) is a treatment for malignant and non-malignant disorders. However, sometimes the numbers of donor hematopoietic stem cells (HSC) are limiting, which can compromise the success of HCT. We recently published that collection and processing of mouse bone marrow (BM) and human cord blood cells in a hypoxic atmosphere of 3% O2 or in ambient air (~21% O2) in the presence of cyclosporine A yields increased numbers of HSC. We now show that collection and processing of mouse BM cells in ambient air in the presence of specific combinations of anti-oxidants and/or inhibitors of epigenetic enzymes can also enhance the collection of HSC, information of potential relevance for enhanced efficacy of HCT

    Ginzburg-Landau theory for the conical cycloid state in multiferroics: applications to CoCr2_2O4_4

    Full text link
    We show that the cycloidal magnetic order of a multiferroic can arise in the absence of spin and lattice anisotropies, for e.g., in a cubic material, and this explains the occurrence of such a state in CoCr2_2O4_4. We discuss the case when this order coexists with ferromagnetism in a so called `conical cycloid' state, and show that a direct transition to this state from the ferromagnet is necessarily first order. On quite general grounds, the reversal of the direction of the uniform magnetization in this state can lead to the reversal of the electric polarization as well, without the need to invoke `toroidal moment' as the order parameter.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev.

    Great Bay Coast Watch: A Citizen Water Monitoring Program Volunteer Water Quality Monitoring Manual, 2004

    Get PDF
    The Great Bay Coast Watch is citizen volunteers, working within the UNH Cooperative Extension/NH Sea Grant Program, protecting the long-term health and natural resources of New Hampshire’s coastal waters and estuarine systems through monitoring and education projects. The purpose of this document is to present step-by-step instructions for conducting water quality testing in support of the Great Bay Coast Watch (GBCW)

    Klein tunneling in carbon nanostructures: a free particle dynamics in disguise

    Full text link
    The absence of backscattering in metallic nanotubes as well as perfect Klein tunneling in potential barriers in graphene are the prominent electronic characteristics of carbon nanostructures. We show that the phenomena can be explained by a peculiar supersymmetry generated by a first order Hamiltonian and zero order supercharge operators. Like the supersymmetry associated with second order reflectionless finite-gap systems, it relates here the low-energy behavior of the charge carriers with the free particle dynamics.Comment: 4 pages, 1 fig., typos correcte

    Raman scattering through surfaces having biaxial symmetry

    Full text link
    Magnetic Raman scattering in two-leg spin ladder materials and the relationship between the anisotropic exchange integrals are analyzed by P. J. Freitas and R. R. P. Singh in Phys. Rev. B, {\bf 62}, 14113 (2000). The angular dependence of the two-magnon scattering is shown to provide information for the magnetic anisotropy in the Sr_14Cu_24O_41 and La_6Ca_8Cu_24O_41 compounds. We point out that the experimental results of polarized Raman measurements at arbitrary angles with respect to the crystal axes have to be corrected for the light ellipticity induced inside the optically anisotropic crystals. We refer quantitatively to the case of Sr_14Cu_24O_41 and discuss potential implications for spectroscopic studies in other materials with strong anisotropy.Comment: To be published as a Comment in Phys. Rev.
    • …
    corecore