2,126 research outputs found

    Increased plasma markers of oxidative stress are associated with coronary heart disease in males with diabetes mellitus and with 10-year risk in a prospective sample of males

    Get PDF
    Background: Increased oxidative stress is associated with coronary heart disease (CHD). We examined the association between plasma markers of oxidative stress and CHD in a cross-sectional sample of patients with diabetes and prospective CHD risk in a sample of men predominantly without diabetes. Methods: Plasma total antioxidant status (TAOS) and the ratio of oxidized LDL (Ox-LDL) to LDL-cholesterol (LDL-C) were determined in a cross-section of 761 Caucasian individuals with diabetes (UDACS study). Plasma TAOS was also determined in 310 baseline samples from a 10-year prospective cohort of 3012 healthy males (NPHSII). Results: Within UDACS, males with CHD had lower mean (SD) plasma TAOS [no CHD, 43.4 (13.2)%; CHD, 40.3 (13.8)%; P = 0.04]. The prevalence of CHD was higher in the lowest compared with the upper quartiles (32.7% vs 19.7%; P = 0.004). We observed a significant association between plasma Ox-LDL:LDL-C and CHD status [no CHD vs CHD, 16.9 (3.1) vs 19.3 (5.0) units/mmol; P = 0.04], with the prevalence of CHD being higher among men in the upper compared with lower quartiles (18.4% vs 35.1%; P = 0.003). No association was observed in females. In NPHSII, TAOS was lower in those who developed CHD [35.1 (8.0)% vs 37.1 (7.9)%; P = 0.04]. The odds ratio for CHD in the lowest compared with the upper quartile was 1.91 (95% confidence interval, 0.99–3.70; P = 0.04). This remained unchanged after adjustment for classic risk factors. Conclusions: A cross-sectional and prospective association exists between baseline plasma measures of oxidative stress and CHD risk. The association with prospective CHD risk remained after adjustment for "traditional" risk factors, implying an independent role for oxidative stress in CHD risk

    Shake-up Processes in a Low-Density Two-Dimensional Electron Gas: Spin-Dependent Transitions to Higher Hole Landau Levels

    Full text link
    A theory of shake-up processes in photoabsorption of an interacting low-density two-dimensional electron gas (2DEG) in strong magnetic fields is presented. In these processes, an incident photon creates an electron-hole pair and, because of Coulomb interactions, simultaneously excites one particle to higher Landau levels (LL's). In this work, the spectra of correlated charged spin-singlet and spin-triplet electron-hole states in the first hole LL and optical transitions to these states (i.e., shake-ups to the first hole LL) are studied. Our results indicate, in particular, the presence of optically-active three-particle quasi-discrete states in the exciton continuum that may give rise to surprisingly sharp Fano resonances in strong magnetic fields. The relation between shake-ups in photoabsorption of the 2DEG and in the 2D hole gas (2DHG), and shake-ups of isolated negative X^- and positive X^+ trions are discussed.Comment: 8 pages, 8 figures. References updated, one figure added (Fig. 6). Accepted in Phys. Rev.

    Far-from-equilibrium quantum many-body dynamics

    Full text link
    The theory of real-time quantum many-body dynamics as put forward in Ref. [arXiv:0710.4627] is evaluated in detail. The formulation is based on a generating functional of correlation functions where the Keldysh contour is closed at a given time. Extending the Keldysh contour from this time to a later time leads to a dynamic flow of the generating functional. This flow describes the dynamics of the system and has an explicit causal structure. In the present work it is evaluated within a vertex expansion of the effective action leading to time evolution equations for Green functions. These equations are applicable for strongly interacting systems as well as for studying the late-time behaviour of nonequilibrium time evolution. For the specific case of a bosonic N-component phi^4 theory with contact interactions an s-channel truncation is identified to yield equations identical to those derived from the 2PI effective action in next-to-leading order of a 1/N expansion. The presented approach allows to directly obtain non-perturbative dynamic equations beyond the widely used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos corrected

    Non-Fermi liquid regime of a doped Mott insulator

    Full text link
    We study the doping of a Mott insulator in the presence of quenched frustrating disorder in the magnetic exchange. A low doping regime δ<J/t\delta<J/t is found, in which the quasiparticle coherent scale is low : ϵF=J(δ/δ)2\epsilon_F^* = J (\delta/\delta^*)^2 with δ=J/t\delta^*=J/t (the ratio of typical exchange to hopping). In the ``quantum critical regime'' ϵF<T<J\epsilon_F^*<T<J, several physical quantities display Marginal Fermi Liquid behaviour : NMR relaxation time 1/T1const.1/T_1\sim const., resistivity ρdc(T)T\rho_{dc}(T) \propto T, optical lifetime \tau_{opt}^{-1}\propto \omega/\ln(\omega/\epstar) and response functions obey ω/T\omega/T scaling, e.g. Jqχ(q,ω)tanh(ω/2T)J\sum_q \chi''(q,\omega) \propto \tanh (\omega/2T). In contrast, single-electron properties display stronger deviations from Fermi liquid theory in this regime with a ω\sqrt{\omega} dependence of the inverse single-particle lifetime and a 1/ω1/\sqrt{\omega} decay of the photoemission intensity. On the basis of this model and of various experimental evidence, it is argued that the proximity of a quantum critical point separating a glassy Mott-Anderson insulator from a metallic ground-state is an important ingredient in the physics of the normal state of cuprate superconductors (particularly the Zn-doped materials). In this picture the corresponding quantum critical regime is a ``slushy'' state of spins and holes with slow spin and charge dynamics responsible for the anomalous properties of the normal state.Comment: 40 pages, RevTeX, including 13 figures in EPS. v2 : minor changes, some references adde

    The Effects of Disorder on the ν=1\nu=1 Quantum Hall State

    Full text link
    A disorder-averaged Hartree-Fock treatment is used to compute the density of single particle states for quantum Hall systems at filling factor ν=1\nu=1. It is found that transport and spin polarization experiments can be simultaneously explained by a model of mostly short-range effective disorder. The slope of the transport gap (due to quasiparticles) in parallel field emerges as a result of the interplay between disorder-induced broadening and exchange, and has implications for skyrmion localization.Comment: 4 pages, 3 eps figure

    Identifying topological edge states in 2D optical lattices using light scattering

    Full text link
    We recently proposed in a Letter [Physical Review Letters 108 255303] a novel scheme to detect topological edge states in an optical lattice, based on a generalization of Bragg spectroscopy. The scope of the present article is to provide a more detailed and pedagogical description of the system - the Hofstadter optical lattice - and probing method. We first show the existence of topological edge states, in an ultra-cold gas trapped in a 2D optical lattice and subjected to a synthetic magnetic field. The remarkable robustness of the edge states is verified for a variety of external confining potentials. Then, we describe a specific laser probe, made from two lasers in Laguerre-Gaussian modes, which captures unambiguous signatures of these edge states. In particular, the resulting Bragg spectra provide the dispersion relation of the edge states, establishing their chiral nature. In order to make the Bragg signal experimentally detectable, we introduce a "shelving method", which simultaneously transfers angular momentum and changes the internal atomic state. This scheme allows to directly visualize the selected edge states on a dark background, offering an instructive view on topological insulating phases, not accessible in solid-state experiments.Comment: 17 pages, 10 figures. Revised and extended version, to appear in EJP Special Topic for the special issue on "Novel Quantum Phases and Mesoscopic Physics in Quantum Gases". Extended version of arXiv:1203.124

    Vortices and dynamics in trapped Bose-Einstein condensates

    Full text link
    I review the basic physics of ultracold dilute trapped atomic gases, with emphasis on Bose-Einstein condensation and quantized vortices. The hydrodynamic form of the Gross-Pitaevskii equation (a nonlinear Schr{\"o}dinger equation) illuminates the role of the density and the quantum-mechanical phase. One unique feature of these experimental systems is the opportunity to study the dynamics of vortices in real time, in contrast to typical experiments on superfluid 4^4He. I discuss three specific examples (precession of single vortices, motion of vortex dipoles, and Tkachenko oscillations of a vortex array). Other unusual features include the study of quantum turbulence and the behavior for rapid rotation, when the vortices form dense regular arrays. Ultimately, the system is predicted to make a quantum phase transition to various highly correlated many-body states (analogous to bosonic quantum Hall states) that are not superfluid and do not have condensate wave functions. At present, this transition remains elusive. Conceivably, laser-induced synthetic vector potentials can serve to reach this intriguing phase transition.Comment: Accepted for publication in Journal of Low Temperature Physics, conference proceedings: Symposia on Superfluids under Rotation (Lammi, Finland, April 2010

    Influence of uniaxial tensile stress on the mechanical and piezoelectric properties of short-period ferroelectric superlattice

    Get PDF
    Tetragonal ferroelectric/ferroelectric BaTiO3/PbTiO3 superlattice under uniaxial tensile stress along the c axis is investigated from first principles. We show that the calculated ideal tensile strength is 6.85 GPa and that the superlattice under the loading of uniaxial tensile stress becomes soft along the nonpolar axes. We also find that the appropriately applied uniaxial tensile stress can significantly enhance the piezoelectricity for the superlattice, with piezoelectric coefficient d33 increasing from the ground state value by a factor of about 8, reaching 678.42 pC/N. The underlying mechanism for the enhancement of piezoelectricity is discussed

    Sustainable development and hospitality education : employers’ perspectives on the relevance for graduate employability

    Get PDF
    This paper examines hospitality employers’ perspectives of sustainable development and the implications for hospitality education, particularly graduate employability. An exploratory approach is used in this research where semi-structured interviews were conducted with employers of hospitality graduates. The results established that respondents had mixed understandings of the meaning and relevance of sustainable development. These employers are, however, gradually recognising the value of sustainability for their business. Though it is not currently a priority in terms of a critical employability skill specifically for the hotel sector, related industries seem more mindful of the implications of sustainability credentials. Thus, hospitality educators need to take appropriate actions in subject specific areas where sustainable development is critical to employment opportunities, creating more industry ready graduates who are also globally aware citizens

    Superconducting fluctuations and the Nernst effect: A diagrammatic approach

    Full text link
    We calculate the contribution of superconducting fluctuations above the critical temperature TcT_c to the transverse thermoelectric response αxy\alpha_{xy}, the quantity central to the analysis of the Nernst effect. The calculation is carried out within the microscopic picture of BCS, and to linear order in magnetic field. We find that as TTcT \to T_c, the dominant contribution to αxy\alpha_{xy} arises from the Aslamazov-Larkin diagrams, and is equal to the result previously obtained from a stochastic time-dependent Ginzburg-Landau equation [Ussishkin, Sondhi, and Huse, arXiv:cond-mat/0204484]. We present an argument which establishes this correspondence for the heat current. Other microscopic contributions, which generalize the Maki-Thompson and density of states terms for the conductivity, are less divergent as TTcT \to T_c.Comment: 11 pages, 5 figure
    corecore