3,216 research outputs found

    Cases for Additive Manufacturing on the International Space Station

    Get PDF
    There are thousands of plastic or non-structural metal components on the International Space Station (ISS), any of which could require replacing sometime between resupply missions. While these may not be life critical, it can cause significant delays to flight projects that have to wait several weeks to months to receive a key part one that could have been designed and built on-board the ISS within a few hours. A plastic deposition additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS

    Layered Metals Fabrication Technology Development for Support of Lunar Exploration at NASA/MSFC

    Get PDF
    NASA's human exploration initiative poses great opportunity and risk for missions to the Moon and beyond. In support of these missions, engineers and scientists at the Marshall Space Flight Center are developing technologies for ground-based and in-situ fabrication capabilities utilizing provisioned and locally-refined materials. Development efforts are pushing state-of-the art fabrication technologies to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, launch vehicle components and crew exercise equipment. This paper addresses current fabrication technologies relative to meeting targeted capabilities, near term advancement goals, and process certification of fabrication methods

    Songbirds use pulse tone register in two voices to generate low-frequency sound

    Get PDF
    The principal physical mechanism of sound generation is similar in songbirds and humans, despite large differences in their vocal organs. Whereas vocal fold dynamics in the human larynx are well characterized, the vibratory behaviour of the sound-generating labia in the songbird vocal organ, the syrinx, is unknown. We present the first high-speed video records of the intact syrinx during induced phonation. The syrinx of anaesthetized crows shows a vibration pattern of the labia similar to that of the human vocal fry register. Acoustic pulses result from short opening of the labia, and pulse generation alternates between the left and right sound sources. Spontaneously calling crows can also generate similar pulse characteristics with only one sound generator. Airflow recordings in zebra finches and starlings show that pulse tone sounds can be generated unilaterally, synchronously or by alternating between the two sides. Vocal fry-like dynamics therefore represent a common production mechanism for low-frequency sounds in songbirds. These results also illustrate that complex vibration patterns can emerge from the mechanical properties of the coupled sound generators in the syrinx. The use of vocal fry-like dynamics in the songbird syrinx extends the similarity to this unusual vocal register with mammalian sound production mechanisms

    The effect of host structure on the selectivity and mechanism of supramolecular catalysis of Prins cyclizations.

    Get PDF
    The effect of host structure on the selectivity and mechanism of intramolecular Prins reactions is evaluated using K12Ga4L6 tetrahedral catalysts. The host structure was varied by modifying the structure of the chelating moieties and the size of the aromatic spacers. While variation in chelator substituents was generally observed to affect changes in rate but not selectivity, changing the host spacer afforded differences in efficiency and product diastereoselectivity. An extremely high number of turnovers (up to 840) was observed. Maximum rate accelerations were measured to be on the order of 105, which numbers among the largest magnitudes of transition state stabilization measured with a synthetic host-catalyst. Host/guest size effects were observed to play an important role in host-mediated enantioselectivity

    3D Printing in Zero-G ISS Technology Demonstration

    Get PDF
    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station. The 3D Printing In Zero-G experiment will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/ objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up specialized manufacturing hardware to perform the entire range of function traditionally machining requires. The technology to produce parts on demand, in space, offers unique design options that are not possible through traditional manufacturing methods while offering cost-effective, high-precision, low-unit on-demand manufacturing. Thus, Additive Manufacturing capabilities are the foundation of an advanced manufacturing in space roadmap

    Increased risk of peripheral arterial disease in polymyalgia rheumatica: a population-based cohort study

    Get PDF
    INTRODUCTION: The present study was conducted to determine whether patients with polymyalgia rheumatica (PMR) are at an increased risk of peripheral arterial disease (PAD). METHODS: An inception cohort of all Olmsted County, Minnesota residents diagnosed with PMR between 1 January 1970 and 31 December 1999 was compared with non-PMR subjects (two for each PMR subject) from among residents. Both cohorts were followed longitudinally by complete medical record review from the incidence date of PMR (or index date for the non-PMR cohort) until death, incident PAD, migration, or 31 December 2006. PMR-related disease characteristics, traditional cardiovascular risk factors and diagnosis of PAD were abstracted from the medical record. Cumulative incidence of PAD was estimated using Kaplan–Meier methods. Cox proportional hazards models were used to assess the risk of PAD in PMR compared with non-PMR. RESULTS: A total of 353 PMR patients (mean age 73.3 years, 67% women) and 705 non-PMR subjects (mean age 73.2 years, 68% female) were followed for a median of 11.0 years. PAD developed in 38 patients (10-year cumulative incidence, 8.5%) with PMR and in 28 non-PMR subjects (10-year cumulative incidence, 4.1%) (hazard ratio (95% confidence interval), 2.40 (1.47, 3.92)). After adjusting for traditional cardiovascular risk factors, patients with PMR still had a significantly higher risk for PAD (hazard ratio, 2.50 (1.53, 4.08)) compared with controls. Giant cell arteritis occurred in 63 (18%) PMR patients but was not predictive of PAD (P = 0.15). There was no difference between mortality in PMR and the non-PMR cohorts nor in PMR patients with and those without PAD (P = 0.16). CONCLUSIONS: Patients with PMR appear to have an increased risk of PAD

    Putting the PASS in Class: Peer Mentors’ Identities in Science Workshops on Campus and Online

    Get PDF
    In this paper, we analyse the introduction of peer mentors into timetabled classes to understand how in-class mentoring supports students’ learning. The peer mentors in this study are high-achieving students who previously completed the same course and who were hired and trained to facilitate Peer Assisted Study Sessions (PASS). PASS gives students the opportunity to deepen their understanding through revision and active learning and are typically held outside of class time. In contrast, our trial embedded peer mentors into classes for a large (~250 students) first-year workshop-based course. We employed a participatory action research methodology to facilitate the peer mentors’ co-creation of the research process. Data sources include peer mentors’ journal entries, student cohort data, and a focus group with teaching staff. We found that during face-to-face workshops, peer mentors role-modelled ideal student behaviour (e.g., asking questions) rather than acting as additional teachers, and this helped students to better understand how to interact effectively in class. The identity of embedded peer mentors is neither that of teachers nor of students, and it instead spans aspects of both as described using a three-part schema comprising (i) identity, (ii) associated roles, and (iii) associated practices. As we moved classes online mid-semester in response to the COVID-19 pandemic, mentors’ identities remained stable, but mentors adjusted their associated roles and practices, including through the technical aspects of their engagement with students. This study highlights the benefits of embedding mentors in classrooms on campus and online

    Rehabilitation medicine summit: building research capacity Executive Summary

    Get PDF
    The general objective of the "Rehabilitation Medicine Summit: Building Research Capacity" was to advance and promote research in medical rehabilitation by making recommendations to expand research capacity. The five elements of research capacity that guided the discussions were: 1) researchers; 2) research culture, environment, and infrastructure; 3) funding; 4) partnerships; and 5) metrics. The 100 participants included representatives of professional organizations, consumer groups, academic departments, researchers, governmental funding agencies, and the private sector. The small group discussions and plenary sessions generated an array of problems, possible solutions, and recommended actions. A post-Summit, multi-organizational initiative is called to pursue the agendas outlined in this report (see Additional File 1)

    Reframing Kurtz’s Painting: Colonial Legacies and Minority Rights in Ethnically Divided Societies

    Get PDF
    Minority rights constitute some of the most normatively and economically important human rights. Although the political science and legal literatures have proffered a number of constitutional and institutional design solutions to address the protection of minority rights, these solutions are characterized by a noticeable neglect of, and lack of sensitivity to, historical processes. This Article addresses that gap in the literature by developing a causal argument that explains diverging practices of minority rights protections as functions of colonial governments’ variegated institutional practices with respect to particular ethnic groups. Specifically, this Article argues that in instances where colonial governments politicize and institutionalize ethnic hegemony in the pre-independence period, an institutional legacy is created that leads to lower levels of minority rights protections. Conversely, a uniform treatment and depoliticization of ethnicity prior to independence ultimately minimizes ethnic cleavages post-independence and consequently causes higher levels of minority rights protections. Through a highly structured comparative historical analysis of Botswana and Ghana, this Article builds on a new and exciting research agenda that focuses on the role of long-term historio-structural and institutional influences on human rights performance and makes important empirical contributions by eschewing traditional methodologies that focus on single case studies that are largely descriptive in their analyses. Ultimately, this Article highlights both the strength of a historical approach to understanding current variations in minority rights protections and the varied institutional responses within a specific colonial government
    • …
    corecore