37,171 research outputs found

    Renormalized broken-symmetry Schwinger-Dyson equations and the 2PI-1/N expansion for the O(N) model

    Full text link
    We derive the renormalized Schwinger-Dyson equations for the one- and two-point functions in the auxiliary field formulation of λϕ4\lambda \phi^4 field theory to order 1/N in the 2PI-1/N expansion. We show that the renormalization of the broken-symmetry theory depends only on the counter terms of the symmetric theory with ϕ=0\phi = 0. We find that the 2PI-1/N expansion violates the Goldstone theorem at order 1/N. In using the O(4) model as a low energy effective field theory of pions to study the time evolution of disoriented chiral condensates one has to {\em{explicitly}} break the O(4) symmetry to give the physical pions a nonzero mass. In this effective theory the {\em additional} small contribution to the pion mass due to the violation of the Goldstone theorem in the 2-PI-1/N equations should be numerically unimportant

    Machine learning with the hierarchy‐of‐hypotheses (HoH) approach discovers novel pattern in studies on biological invasions

    Get PDF
    Research synthesis on simple yet general hypotheses and ideas is challenging in scientific disciplines studying highly context‐dependent systems such as medical, social, and biological sciences. This study shows that machine learning, equation‐free statistical modeling of artificial intelligence, is a promising synthesis tool for discovering novel patterns and the source of controversy in a general hypothesis. We apply a decision tree algorithm, assuming that evidence from various contexts can be adequately integrated in a hierarchically nested structure. As a case study, we analyzed 163 articles that studied a prominent hypothesis in invasion biology, the enemy release hypothesis. We explored if any of the nine attributes that classify each study can differentiate conclusions as classification problem. Results corroborated that machine learning can be useful for research synthesis, as the algorithm could detect patterns that had been already focused in previous narrative reviews. Compared with the previous synthesis study that assessed the same evidence collection based on experts' judgement, the algorithm has newly proposed that the studies focusing on Asian regions mostly supported the hypothesis, suggesting that more detailed investigations in these regions can enhance our understanding of the hypothesis. We suggest that machine learning algorithms can be a promising synthesis tool especially where studies (a) reformulate a general hypothesis from different perspectives, (b) use different methods or variables, or (c) report insufficient information for conducting meta‐analyses

    Classical Nucleation Theory of the One-Component Plasma

    Full text link
    We investigate the crystallization rate of a one-component plasma (OCP) in the context of classical nucleation theory. From our derivation of the free energy of an arbitrary distribution of solid clusters embedded in a liquid phase, we derive the steady-state nucleation rate of an OCP as a function of the Coulomb coupling parameter. Our result for the rate is in accord with recent molecular dynamics simulations, but it is greater than that of previous analytical estimates by many orders of magnitude. Further molecular dynamics simulations of the nucleation rate of a supercooled liquid OCP for several values of the coupling parameter would clarify the physics of this process.Comment: 6 pages, 1 figure, accepted by PR

    Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    Get PDF
    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates

    Nonequilibrium evolution of Phi**4 theory in 1+1 dimensions in the 2PPI formalism

    Get PDF
    We consider the out-of-equilibrium evolution of a classical condensate field and its quantum fluctuations for a Phi**4 model in 1+1 dimensions with a symmetric and a double well potential. We use the 2PPI formalism and go beyond the Hartree approximation by including the sunset term. In addition to the mean field phi= the 2PPI formalism uses as variational parameter a time dependent mass M**2(t) which contains all local insertions into the Green function. We compare our results to those obtained in the Hartree approximation. In the symmetric Phi**4 theory we observe that the mean field shows a stronger dissipation than the one found in the Hartree approximation. The dissipation is roughly exponential in an intermediate time region. In the theory with spontaneous symmetry breaking, i.e., with a double well potential, the field amplitude tends to zero, i.e., to the symmetric configuration. This is expected on general grounds: in 1+1 dimensional quantum field theory there is no spontaneous symmetry breaking for T >0, and so there should be none at finite energy density (microcanonical ensemble), either. Within the time range of our simulations the momentum spectra do not thermalize and display parametric resonance bands.Comment: 14 pages, 18 encapsulated postscript figures; v2 minor changes, new appendix, accepted for publication in Phys.Rev.

    Resumming the large-N approximation for time evolving quantum systems

    Get PDF
    In this paper we discuss two methods of resumming the leading and next to leading order in 1/N diagrams for the quartic O(N) model. These two approaches have the property that they preserve both boundedness and positivity for expectation values of operators in our numerical simulations. These approximations can be understood either in terms of a truncation to the infinitely coupled Schwinger-Dyson hierarchy of equations, or by choosing a particular two-particle irreducible vacuum energy graph in the effective action of the Cornwall-Jackiw-Tomboulis formalism. We confine our discussion to the case of quantum mechanics where the Lagrangian is L(x,x˙)=(1/2)∑i=1Nx˙i2−(g/8N)[∑i=1Nxi2−r02]2L(x,\dot{x}) = (1/2) \sum_{i=1}^{N} \dot{x}_i^2 - (g/8N) [ \sum_{i=1}^{N} x_i^2 - r_0^2 ]^{2}. The key to these approximations is to treat both the xx propagator and the x2x^2 propagator on similar footing which leads to a theory whose graphs have the same topology as QED with the x2x^2 propagator playing the role of the photon. The bare vertex approximation is obtained by replacing the exact vertex function by the bare one in the exact Schwinger-Dyson equations for the one and two point functions. The second approximation, which we call the dynamic Debye screening approximation, makes the further approximation of replacing the exact x2x^2 propagator by its value at leading order in the 1/N expansion. These two approximations are compared with exact numerical simulations for the quantum roll problem. The bare vertex approximation captures the physics at large and modest NN better than the dynamic Debye screening approximation.Comment: 30 pages, 12 figures. The color version of a few figures are separately liste

    Size of Fireballs Created in High Energy Lead-Lead Collisions as Inferred from Coulomb Distortions of Pion Spectra

    Full text link
    We compute the Coulomb effects produced by an expanding, highly charged fireball on the momentum distribution of pions. We compare our results to data on Au+Au at 11.6 A GeV from E866 at the BNL AGS and to data on Pb+Pb at 158 A GeV from NA44 at the CERN SPS. We conclude that the distortion of the spectra at low transverse momentum and mid-rapidity can be explained in both experiments by the effect of the large amount of participating charge in the central rapidity region. By adjusting the fireball expansion velocity to match the average transverse momentum of protons, we find a best fit when the fireball radius is about 10 fm, as determined by the moment when the pions undergo their last scattering. This value is common to both the AGS and CERN experiments.Comment: Enlarged discussion, new references added, includes new analysis of pi-/pi+ at AGS energies. 12 pages 5 figures, uses LaTex and epsfi

    Time evolution of the chiral phase transition during a spherical expansion

    Full text link
    We examine the non-equilibrium time evolution of the hadronic plasma produced in a relativistic heavy ion collision, assuming a spherical expansion into the vacuum. We study the O(4)O(4) linear sigma model to leading order in a large-NN expansion. Starting at a temperature above the phase transition, the system expands and cools, finally settling into the broken symmetry vacuum state. We consider the proper time evolution of the effective pion mass, the order parameter ⟚σ⟩\langle \sigma \rangle, and the particle number distribution. We examine several different initial conditions and look for instabilities (exponentially growing long wavelength modes) which can lead to the formation of disoriented chiral condensates (DCCs). We find that instabilities exist for proper times which are less than 3 fm/c. We also show that an experimental signature of domain growth is an increase in the low momentum spectrum of outgoing pions when compared to an expansion in thermal equilibrium. In comparison to particle production during a longitudinal expansion, we find that in a spherical expansion the system reaches the ``out'' regime much faster and more particles get produced. However the size of the unstable region, which is related to the domain size of DCCs, is not enhanced.Comment: REVTex, 20 pages, 8 postscript figures embedded with eps

    Analytic and Numerical Study of Preheating Dynamics

    Full text link
    We analyze the phenomenon of preheating,i.e. explosive particle production due to parametric amplification of quantum fluctuations in the unbroken case, or spinodal instabilities in the broken phase, using the Minkowski space O(N)O(N) vector model in the large NN limit to study the non-perturbative issues involved. We give analytic results for weak couplings and times short compared to the time at which the fluctuations become of the same order as the tree level,as well as numerical results including the full backreaction.In the case where the symmetry is unbroken, the analytic results agree spectacularly well with the numerical ones in their common domain of validity. In the broken symmetry case, slow roll initial conditions from the unstable minimum at the origin, give rise to a new and unexpected phenomenon: the dynamical relaxation of the vacuum energy.That is, particles are abundantly produced at the expense of the quantum vacuum energy while the zero mode comes back to almost its initial value.In both cases we obtain analytically and numerically the equation of state which turns to be written in terms of an effective polytropic index that interpolates between vacuum and radiation-like domination. We find that simplified analysis based on harmonic behavior of the zero mode, giving rise to a Mathieu equation forthe non-zero modes miss important physics. Furthermore, analysis that do not include the full backreaction do not conserve energy, resulting in unbound particle production. Our results do not support the recent claim of symmetry restoration by non-equilibrium fluctuations.Finally estimates of the reheating temperature are given,as well as a discussion of the inconsistency of a kinetic approach to thermalization when a non-perturbatively large number of particles is created.Comment: Latex file, 52 pages and 24 figures in .ps files. Minor changes. To appear in Physical Review D, 15 December 199

    Gauge Fields Out-Of-Equilibrium: A Gauge Invariant Formulation and the Coulomb Gauge

    Full text link
    We study the abelian Higgs model out-of-equilibrium in two different approaches, a gauge invariant formulation, proposed by Boyanovsky et al. \cite{Boyanovsky:1996dc} and in the Coulomb gauge. We show that both approaches become equivalent in a consistent one loop approximation. Furthermore, we carry out a proper renormalization for the model in order to prepare the equations for a numerical implementation. The additional degrees of freedom, which arise in gauge theories, influence the behavior of the system dramatically. A comparison with results in the 't Hooft-Feynman background gauge found by us recently, shows very good agreement.Comment: 32 pages, 8 figure
    • 

    corecore