3,509 research outputs found

    Integration of Product, Package, Process, and Environment: A Food System Optimization

    Get PDF
    The food systems slated for future NASA missions must meet crew nutritional needs, be acceptable for consumption, and use resources efficiently. Although the current food system of prepackaged, moderately stabilized food items works well for International Space Station (ISS) missions, many of the current space menu items do not maintain acceptability and/or nutritive value beyond 2 years. Longer space missions require that the food system can sustain the crew for 3 to 5 years without replenishment. The task "Integration of Product, Package, Process, and Environment: A Food System Optimization" has the objective of optimizing food-product shelf life for the space-food system through product recipe adjustments, new packaging and processing technologies, and modified storage conditions. Two emergent food processing technologies were examined to identify a pathway to stable, wet-pack foods without the detrimental color and texture effects. Both microwave-assisted thermal sterilization (MATS) and pressure-assisted thermal stabilization (PATS) were evaluated against traditional retort processing to determine if lower heat inputs during processing would produce a product with higher micronutrient quality and longer shelf life. While MATS products did have brighter color and better texture initially, the advantages were not sustained. The non-metallized packaging film used in the process likely provided inadequate oxygen barrier. No difference in vitamin stability was evident between MATS and retort processed foods. Similarly, fruit products produced using PATS showed improved color and texture through 3 years of storage compared to retort fruit, but the vitamin stability was not improved. The final processing study involved freeze drying. Five processing factors were tested in factorial design to assess potential impact of each to the quality of freeze-dried food, including the integrity of the microstructure. The initial freezing rate and primary freeze drying temperature and pressure were linked to final product quality in freeze-dried corn, indicating processing modifications that could lead to improved product shelf life. Storage temperatures and packaging systems were also assessed for the impact to food quality. Reduced temperature storage had inconclusive impact to the progression of rancidity in butter cookies. Frozen storage was detrimental to fruit and vegetable textural attributes but refrigerated storage helped to sustain color and organoleptic ratings for plant-based foods. With regard to packaging systems, the metallized film overwrap significantly decreased the progression of the rancidity of butter cookies as compared to the highest barrier non-metallized film. The inclusion of oxygen scavengers resulted in noticeable moisture gains in butter cookies over time, independent of packaging film systems. Neither emergent processing technology nor the freeze dry optimization resulted in compelling quality differences from current space food provisions such that a five-year shelf life is likely with these processing changes alone. Using a combination of refrigeration and PATS processing is expected to result in organoleptically-acceptable fruit quality for most fruits through five years. The vitamin degradation will be aided somewhat by the cold temperatures but, given the labile nature of vitamin C, a more stable fortification method, such as encapsulation, should also be investigated to ensure vitamin delivery throughout the product life. Similarly, significant improvement to the packaging film used in the MATS processing, optimization of formulation for dielectric properties, vitamin fortification, and reduced temperature storage should be investigated as a hurdle approach to reach a five year shelf life in wet-pack entrees and soups. Baked goods and other environmentally-sensitive spaceflight foods will require an almost impenetrable barrier to protect the foods from oxygen and moisture ingress but scavengers and reduced storage temperature did not improve baked good shelf life and are not recommended at this time for these foods

    Improvement of Shelf Life for Space Food Through a Hurdle Approach

    Get PDF
    The processed and prepackaged spaceflight food system is a critical human support system for manned space flights. As missions extend longer and farther from Earth over the next 20 years, strategies to stabilize the nutritional and sensory quality of food must be identified. For a mission to Mars, the space foods themselves must maintain quality for up to 5 years to align with cargo prepositioning scenarios. Optimizing the food system to achieve a 5-year shelf life mitigates the risk of an inadequate food system during extended missions. Because previous attempts to determine a singular pathway to a 5-year shelf life for food were unsuccessful, this investigation combines several approaches, based on science, technological advancement, and past empirical evidence, that will define the prepackaged food system for long duration missions. This study supports the Advanced Food Technology strategic planning process by identifying food processing, packaging, and storage technologies that will be required for exploration missions and the extent that they must be implemented to achieve a 5-year shelf life for the entire food system

    Constraints on Mars Aphelion Cloud Belt Phase Function and Ice Crystal Geometries

    Get PDF
    This study constrains the lower bound of the scattering phase function of Martian water ice clouds (WICs) through the implementation of a new observation aboard the Mars Science Laboratory (MSL). The Phase Function Sky Survey (PFSS) was a multiple pointing all-sky observation taken with the navigation cameras (Navcam) aboard MSL. The PFSS was executed 35 times during the Aphelion Cloud Belt (ACB) season of Mars Year 34 over a solar longitude range of L_s=61.4{\deg}-156.5{\deg}. Twenty observations occurred in the morning hours between 06:00 and 09:30 LTST, and 15 runs occurred in the evening hours between 14:30 and 18:00 LTST, with an operationally required 2.5 hour gap on either side of local noon due the sun being located near zenith. The resultant WIC phase function was derived over an observed scattering angle range of 18.3{\deg} to 152.61{\deg}, normalized, and compared with 9 modeled phase functions: seven ice crystal habits and two Martian WIC phase functions currently being implemented in models. Through statistical chi-squared probability tests, the five most probable ice crystal geometries observed in the ACB WICs were aggregates, hexagonal solid columns, hollow columns, plates, and bullet rosettes with p-values greater than or equal to 0.60, 0.57,0.56,0.56, and 0.55, respectively. Droxtals and spheres had p-values of 0.35, and 0.2, making them less probable components of Martian WICs, but still statistically possible ones. Having a better understanding of the ice crystal habit and phase function of Martian water ice clouds directly benefits Martian climate models which currently assume spherical and cylindrical particles.Comment: Accepted Manuscript by Planetary and Space Scienc

    Glia Excitation in the CNS Modulates Intact Behaviors and Sensory-CNS-Motor Circuitry

    Get PDF
    Glial cells play a role in many important processes, though the mechanisms through which they affect neighboring cells are not fully known. Insights may be gained by selectively activating glial cell populations in intact organisms utilizing the activatable channel proteins channel rhodopsin (ChR2XXL) and TRPA1. Here, the impacts of the glial-specific expression of these channels were examined in both larval and adult Drosophila. The Glia \u3e ChR2XXL adults and larvae became immobile when exposed to blue light and TRPA1-expressed Drosophila upon heat exposure. The chloride pump expression in glia \u3e eNpHR animals showed no observable differences in adults or larvae. In the in situ neural circuit activity of larvae in the Glia \u3e ChR2XXL, the evoked activity first became more intense with concurrent light exposure, and then the activity was silenced and slowly picked back up after light was turned off. This decrease in motor nerve activity was also noted in the intact behaviors for Glia \u3e ChR2XXL and Glia \u3e TRPA1 larvae. As a proof of concept, this study demonstrated that activation of the glia can produce excessive neural activity and it appears with increased excitation of the glia and depressed motor neuron activity

    Food Fortification Stability Study

    Get PDF
    This study aims to assess the stability of vitamin content, sensory acceptability and color variation in fortified spaceflight foods over a period of 2 years. Findings will identify optimal formulation, processing, and storage conditions to maintain stability and acceptability of commercially available fortification nutrients. Changes in food quality are being monitored to indicate whether fortification affects quality over time (compared to the unfortified control), thus indicating their potential for use on long-duration missions

    Functional Foods Baseline and Requirements Analysis

    Get PDF
    Current spaceflight foods were evaluated to determine if their nutrient profile supports positioning as a functional food and if the stability of the bioactive compound within the food matrix over an extended shelf-life correlated with the expected storage duration during the mission. Specifically, the research aims were: Aim A. To determine the amount of each nutrient in representative spaceflight foods immediately after processing and at predetermined storage time to establish the current nutritional state. Aim B. To identify the requirements to develop foods that stabilize these nutrients such that required concentrations are maintained in the space food system throughout long duration missions (up to five years). Aim C. To coordinate collaborations with health and performance groups that may require functional foods as a countermeasure

    Effect of Reduced Temperature Storage on Nutrient & Quality Stability in Space Food

    Get PDF
    The processed and prepackaged spaceflight food system is a critical human support system for manned space flights. As missions extend longer and farther from Earth over the next 20 years, strategies to stabilize the nutritional and sensory quality of food must be identified. For a mission to Mars, the space foods themselves must maintain quality for up to 5 years to align with cargo prepositioning scenarios. Optimizing the food system to achieve a 5year shelf life mitigates the risk of an inadequate food system during extended missions. Because previous attempts to determine a singular pathway to a 5year shelf life for food were unsuccessful, this investigation combines several approaches, based on science, technological advancement, and past empirical evidence, to determine their potential to extend the shelf life of the prepackaged food system for long duration missions. This study may identify food processing, packaging, and storage technologies that will be required for exploration missions and the extent that they must be implemented to achieve a 5year shelf life for the entire food system

    Effect of Temperature on Heart Rate for \u3cem\u3ePhaenicia sericata\u3c/em\u3e and \u3cem\u3eDrosophila melanogaster\u3c/em\u3e with Altered Expression of the TrpA1 Receptors

    Get PDF
    The transient receptor potential (TrpA—ankyrin) receptor has been linked to pathological conditions in cardiac function in mammals. To better understand the function of the TrpA1 in regulation of the heart, a Drosophila melanogaster model was used to express TrpA1 in heart and body wall muscles. Heartbeat of in intact larvae as well as hearts in situ, devoid of hormonal and neural input, indicate that strong over-expression of TrpA1 in larvae at 30 or 37 °C stopped the heart from beating, but in a diastolic state. Cardiac function recovered upon cooling after short exposure to high temperature. Parental control larvae (UAS-TrpA1) increased heart rate transiently at 30 and 37 °C but slowed at 37 °C within 3 min for in-situ preparations, while in-vivo larvae maintained a constant heart rate. The in-situ preparations maintained an elevated rate at 30 °C. The heartbeat in the TrpA1-expressing strains could not be revived at 37 °C with serotonin. Thus, TrpA1 activation may have allowed enough Ca2+ influx to activate K(Ca) channels into a form of diastolic stasis. TrpA1 activation in body wall muscle confirmed a depolarization of membrane. In contrast, blowfly Phaenicia sericata larvae increased heartbeat at 30 and 37 °C, demonstrating greater cardiac thermotolerance

    Extension of Space Food Shelf Life Through Hurdle Approach

    Get PDF
    The processed and prepackaged space food system is the main source of crew nutrition, and hence central to astronaut health and performance. Unfortunately, space food quality and nutrition degrade to unacceptable levels in two to three years with current food stabilization technologies. Future exploration missions will require a food system that remains safe, acceptable and nutritious through five years of storage within vehicle resource constraints. The potential of stabilization technologies (alternative storage temperatures, processing, formulation, ingredient source, packaging, and preparation procedures), when combined in hurdle approach, to mitigate quality and nutritional degradation is being assessed. Sixteen representative foods from the International Space Station food system were chosen for production and analysis and will be evaluated initially and at one, three, and five years with potential for analysis at seven years if necessary. Analysis includes changes in color, texture, nutrition, sensory quality, and rehydration ratio when applicable. The food samples will be stored at -20 C, 4 C, and 21 C. Select food samples will also be evaluated at -80 C to determine the impacts of ultra-cold storage after one and five years. Packaging film barrier properties and mechanical integrity will be assessed before and after processing and storage. At the study conclusion, if tested hurdles are adequate, formulation, processing, and storage combinations will be uniquely identified for processed food matrices to achieve a five-year shelf life. This study will provide one of the most comprehensive investigations of long duration food stability ever completed, and the achievement of extended food system stability will have profound impacts to health and performance for spaceflight crews and for relief efforts and military applications on Earth
    corecore