1,202 research outputs found

    Calculators in High School Classrooms

    Get PDF
    In today’s mathematics classrooms, calculators are becoming incredibly well known and used almost daily. However, there has been a common question about the use of these calculators: Is too much exposure to calculators causing students to become dependent on them and consequently start to forget basic addition, subtraction, multiplication, and division, leading into confusion on other mathematics topics because the most basic foundation of mathematics is not there? The purpose of this paper is to discuss both sides of this question by looking at different studies as well as provide our own experiences with this subject while working in different classrooms

    Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Fly's Eye Experiment

    Get PDF
    We have measured the cosmic ray spectrum above 10^17.2 eV using the two air fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, photo-tube and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extra-galactic sources.Comment: 4 pages, 4 figures. Uses 10pt.rtx, amsmath.sty, aps.rtx, revsymb.sty, revtex4.cl

    'The world is full of big bad wolves': investigating the experimental therapeutic spaces of R.D. Laing and Aaron Esterson

    Get PDF
    In conjunction with the recent critical assessments of the life and work of R.D. Laing, this paper seeks to demonstrate what is revealed when Laing’s work on families and created spaces of mental health care are examined through a geographical lens. The paper begins with an exploration of Laing’s time at the Tavistock Clinic in London during the 1960s, and of the co-authored text with Aaron Esterson entitled, Sanity, Madness and the Family (1964). The study then seeks to demonstrate the importance Laing and his colleague placed on the time-space situatedness of patients and their worlds. Finally, an account is provided of Laing’s and Esterson’s spatial thinking in relation to their creation of both real and imagined spaces of therapeutic care

    Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method

    Get PDF
    Groundwater recharge on Pahute Mesa was estimated using the chloride mass-balance (CMB) method. This method relies on the conservative properties of chloride to trace its movement from the atmosphere as dry- and wet-deposition through the soil zone and ultimately to the saturated zone. Typically, the CMB method assumes no mixing of groundwater with different chloride concentrations; however, because groundwater is thought to flow into Pahute Mesa from valleys north of Pahute Mesa, groundwater flow rates (i.e., underflow) and chloride concentrations from Kawich Valley and Gold Flat were carefully considered. Precipitation was measured with bulk and tipping-bucket precipitation gauges installed for this study at six sites on Pahute Mesa. These data, along with historical precipitation amounts from gauges on Pahute Mesa and estimates from the PRISM model, were evaluated to estimate mean annual precipitation. Chloride deposition from the atmosphere was estimated by analyzing quarterly samples of wet- and dry-deposition for chloride in the bulk gauges and evaluating chloride wet-deposition amounts measured at other locations by the National Atmospheric Deposition Program. Mean chloride concentrations in groundwater were estimated using data from the UGTA Geochemistry Database, data from other reports, and data from samples collected from emplacement boreholes for this study. Calculations were conducted assuming both no underflow and underflow from Kawich Valley and Gold Flat. Model results estimate recharge to be 30 mm/yr with a standard deviation of 18 mm/yr on Pahute Mesa, for elevations >1800 m amsl. These estimates assume Pahute Mesa recharge mixes completely with underflow from Kawich Valley and Gold Flat. The model assumes that precipitation, chloride concentration in bulk deposition, underflow and its chloride concentration, have been constant over the length of time of recharge

    Possible Disintegrating Short-Period Super-Mercury Orbiting KIC 12557548

    Get PDF
    We report here on the discovery of stellar occultations, observed with Kepler, that recur periodically at 15.685 hour intervals, but which vary in depth from a maximum of 1.3% to a minimum that can be less than 0.2%. The star that is apparently being occulted is KIC 12557548, a K dwarf with T_eff = 4400 K and V = 16. Because the eclipse depths are highly variable, they cannot be due solely to transits of a single planet with a fixed size. We discuss but dismiss a scenario involving a binary giant planet whose mutual orbit plane precesses, bringing one of the planets into and out of a grazing transit. We also briefly consider an eclipsing binary, that either orbits KIC 12557548 in a hierarchical triple configuration or is nearby on the sky, but we find such a scenario inadequate to reproduce the observations. We come down in favor of an explanation that involves macroscopic particles escaping the atmosphere of a slowly disintegrating planet not much larger than Mercury. The particles could take the form of micron-sized pyroxene or aluminum oxide dust grains. The planetary surface is hot enough to sublimate and create a high-Z atmosphere; this atmosphere may be loaded with dust via cloud condensation or explosive volcanism. Atmospheric gas escapes the planet via a Parker-type thermal wind, dragging dust grains with it. We infer a mass loss rate from the observations of order 1 M_E/Gyr, with a dust-to-gas ratio possibly of order unity. For our fiducial 0.1 M_E planet, the evaporation timescale may be ~0.2 Gyr. Smaller mass planets are disfavored because they evaporate still more quickly, as are larger mass planets because they have surface gravities too strong to sustain outflows with the requisite mass-loss rates. The occultation profile evinces an ingress-egress asymmetry that could reflect a comet-like dust tail trailing the planet; we present simulations of such a tail.Comment: 14 pages, 7 figures; submitted to ApJ, January 10, 2012; accepted March 21, 201
    corecore