69,907 research outputs found

    Impact of future HERA data on the determination of proton parton distribution functions using the ZEUS QCD fit

    Full text link
    The high precision and large kinematic coverage of the data from the HERA-I running period (1994-2000) have already allowed precise extractions of proton parton distribution functions (PDFs). The HERA-II running program is now underway and is expected to provide a substantial increase in the luminosity collected at HERA. In this paper, a study is presented which investigates the potential impact of future data from HERA on the proton PDF uncertainties, within the currently planned running scenario. In addition, the effect of a possible future measurement of the longitudinal structure function, FL, on the gluon distribution is investigated.Comment: 5 pages, 2 figures, in proceedings of the XIII International Workshop on Deep Inelastic Scattering - DIS 2005, Madison, Wisconsin, 200

    The Power of Two Choices in Distributed Voting

    Full text link
    Distributed voting is a fundamental topic in distributed computing. In pull voting, in each step every vertex chooses a neighbour uniformly at random, and adopts its opinion. The voting is completed when all vertices hold the same opinion. On many graph classes including regular graphs, pull voting requires Θ(n)\Theta(n) expected steps to complete, even if initially there are only two distinct opinions. In this paper we consider a related process which we call two-sample voting: every vertex chooses two random neighbours in each step. If the opinions of these neighbours coincide, then the vertex revises its opinion according to the chosen sample. Otherwise, it keeps its own opinion. We consider the performance of this process in the case where two different opinions reside on vertices of some (arbitrary) sets AA and BB, respectively. Here, A+B=n|A| + |B| = n is the number of vertices of the graph. We show that there is a constant KK such that if the initial imbalance between the two opinions is ?ν0=(AB)/nK(1/d)+(d/n)\nu_0 = (|A| - |B|)/n \geq K \sqrt{(1/d) + (d/n)}, then with high probability two sample voting completes in a random dd regular graph in O(logn)O(\log n) steps and the initial majority opinion wins. We also show the same performance for any regular graph, if ν0Kλ2\nu_0 \geq K \lambda_2 where λ2\lambda_2 is the second largest eigenvalue of the transition matrix. In the graphs we consider, standard pull voting requires Ω(n)\Omega(n) steps, and the minority can still win with probability B/n|B|/n.Comment: 22 page

    Acreage Decisions When Risk Preferences Vary

    Get PDF
    This presentation summarizes an AAEA poster.Risk preferences, acreage decision, soybeans, corn, wheat, Crop Production/Industries, Risk and Uncertainty,

    Buckling of conical shell with local imperfections

    Get PDF
    Small geometric imperfections in thin-walled shell structures can cause large reductions in buckling strength. Most imperfections found in structures are neither axisymmetric nor have the shape of buckling modes but rather occur locally. This report presents the results of a study of the effect of local imperfections on the critical buckling load of a specific axially compressed thin-walled conical shell. The buckling calculations were performed by using a two-dimensional shell analysis program referred to as the STAGS (Structural Analysis of General Shells) computer code, which has no axisymmetry restrictions. Results show that the buckling load found from a bifurcation buckling analysis is highly dependent on the circumferential arc length of the imperfection type studied. As the circumferential arc length of the imperfection is increased, a reduction of up to 50 percent of the critical load of the perfect shell can occur. The buckling load of the cone with an axisymmetric imperfections is nearly equal to the buckling load of imperfections which extended 60 deg or more around the circumference, but would give a highly conservative estimate of the buckling load of a shell with an imperfection of a more local nature

    Globally Flexible Modeling of County-Level Acreage Response for Primary U.S. Field Crops

    Get PDF
    This study takes the standard acreage response model that stems from an expected utility framework, accounting for both price and yield variability, and nests it within a flexible semi-nonparametric (SNP) model consistent with farm-level decision models for computationally tractable results. We use county-level data to estimate the response of farmers’ planting preferences to changes in revenue and other variables.acreage response, Elasticities, field crops, semi-nonparametric, risk, Agricultural and Food Policy, Crop Production/Industries, Farm Management, Land Economics/Use, Production Economics, Research Methods/ Statistical Methods, Risk and Uncertainty,

    How to Couple from the Past Using a Read-Once Source of Randomness

    Full text link
    We give a new method for generating perfectly random samples from the stationary distribution of a Markov chain. The method is related to coupling from the past (CFTP), but only runs the Markov chain forwards in time, and never restarts it at previous times in the past. The method is also related to an idea known as PASTA (Poisson arrivals see time averages) in the operations research literature. Because the new algorithm can be run using a read-once stream of randomness, we call it read-once CFTP. The memory and time requirements of read-once CFTP are on par with the requirements of the usual form of CFTP, and for a variety of applications the requirements may be noticeably less. Some perfect sampling algorithms for point processes are based on an extension of CFTP known as coupling into and from the past; for completeness, we give a read-once version of coupling into and from the past, but it remains unpractical. For these point process applications, we give an alternative coupling method with which read-once CFTP may be efficiently used.Comment: 28 pages, 2 figure

    CARMIL family proteins as multidomain regulators of actin-based motility

    Get PDF
    CARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem. Many cellular functions of CARMILs require the interaction with CP; however, a more surprising result is that the cellular function of CP in cells appears to require binding to a CARMIL or another protein with a CPI motif, suggesting that CPI-motif proteins target CP and modulate its actin-capping activity. Vertebrates have three highly conserved genes and expressed isoforms of CARMIL with distinct and overlapping localizations and functions in cells. Various domains of these CARMIL isoforms interact with plasma membranes, vimentin intermediate filaments, SH3-containing class I myosins, the dual-GEF Trio, and other adaptors and signaling molecules. These biochemical properties suggest that CARMILs play a variety of membrane-associated functions related to actin assembly and signaling. CARMIL mutations and variants have been implicated in several human diseases. We focus on roles for CARMILs in signaling in addition to their function as regulators of CP and actin. </jats:p
    corecore