5 research outputs found

    Spatial Accuracy of Climate Networks in Nebraska

    Get PDF
    Climate data has become increasingly scrutinized for its accuracy because of the need for reliable predictions about climate change. The U.S. has taken great strides to keep up with the demand for accurate climate data. Over the last thirty years, vast improvements to instrumentation, data collection, and station siting have created more accurate data records. This study is to explore the accuracy of existing networks. This study analyzes three climate networks used in Nebraska: the U.S. Historical Climatology Network (HCN), the Automated Weather Data Network (AWDN), and the newest network, the U.S. Climate Reference Network (CRN). Each of these networks has its own instrumentation, collection methods and station sites. Maximum and minimum surface temperature from the three networks and the spatial structure of temperature variations at the surface are compared. Two different timeframes, 2005-2009 and 1985-2005, were used to include the newest network, CRN, in the analysis. Daily data were collected from each of these networks within the specified timeframe. Root mean square error (RMSE) between each candidate station and the surrounding stations within 500 kilometers were calculated and evaluated to determine spatial accuracy of the network. This study found that in the 5 year analysis, CRN versus AWDN, the two networks were not significantly different enough to denote the network with high spatial accuracy. For the 21 year analysis, HCN versus AWDN, AWDN stations showed higher spatial accuracy (smaller error) than HCN stations for the variable of maximum temperature. The error for the two networks were not significantly different enough to decipher the network with the higher spatial accuracy. Advisors: Kenneth G. Hubbard & David B. Mar

    Spatial Accuracy of Climate Networks: A Case Study in Nebraska

    Get PDF
    Climate data are increasingly scrutinized for accuracy because of the need for reliable input for climaterelated decision making and assessments of climate change. Over the last 30 years, vast improvements to U.S. instrumentation, data collection, and station siting have created more accurate data. This study explores the spatial accuracy of daily maximum and minimum air temperature data in Nebraska networks, including the U.S. Historical Climatology Network (HCN), the Automated Weather Data Network (AWDN), and the more recent U.S. Climate Reference Network (CRN). The spatial structure of temperature variations at the earth’s surface is compared for timeframes 2005–09 for CRN and AWDN and 1985–2005 for AWDN and HCN. Individual root-mean-square errors between candidate station and surrounding stations were calculated and used to determine the spatial accuracy of the networks. This study demonstrated that in the 5-yr analysis CRN and AWDN were of high spatial accuracy. For the 21-yr analysis the AWDN proved to have higher spatial accuracy (smaller errors) than the HCN for both maximum and minimum air temperature and for all months. In addition, accuracy was generally higher in summer months and the subhumid area had higher accuracy than did the semiarid area. The findings of this study can be used for Nebraska as an estimate of the uncertainty associated with using a weather station’s data at a decision point some distance from the station

    BHPR research: qualitative1. Complex reasoning determines patients' perception of outcome following foot surgery in rheumatoid arhtritis

    Get PDF
    Background: Foot surgery is common in patients with RA but research into surgical outcomes is limited and conceptually flawed as current outcome measures lack face validity: to date no one has asked patients what is important to them. This study aimed to determine which factors are important to patients when evaluating the success of foot surgery in RA Methods: Semi structured interviews of RA patients who had undergone foot surgery were conducted and transcribed verbatim. Thematic analysis of interviews was conducted to explore issues that were important to patients. Results: 11 RA patients (9 ♂, mean age 59, dis dur = 22yrs, mean of 3 yrs post op) with mixed experiences of foot surgery were interviewed. Patients interpreted outcome in respect to a multitude of factors, frequently positive change in one aspect contrasted with negative opinions about another. Overall, four major themes emerged. Function: Functional ability & participation in valued activities were very important to patients. Walking ability was a key concern but patients interpreted levels of activity in light of other aspects of their disease, reflecting on change in functional ability more than overall level. Positive feelings of improved mobility were often moderated by negative self perception ("I mean, I still walk like a waddling duck”). Appearance: Appearance was important to almost all patients but perhaps the most complex theme of all. Physical appearance, foot shape, and footwear were closely interlinked, yet patients saw these as distinct separate concepts. Patients need to legitimize these feelings was clear and they frequently entered into a defensive repertoire ("it's not cosmetic surgery; it's something that's more important than that, you know?”). Clinician opinion: Surgeons' post operative evaluation of the procedure was very influential. The impact of this appraisal continued to affect patients' lasting impression irrespective of how the outcome compared to their initial goals ("when he'd done it ... he said that hasn't worked as good as he'd wanted to ... but the pain has gone”). Pain: Whilst pain was important to almost all patients, it appeared to be less important than the other themes. Pain was predominately raised when it influenced other themes, such as function; many still felt the need to legitimize their foot pain in order for health professionals to take it seriously ("in the end I went to my GP because it had happened a few times and I went to an orthopaedic surgeon who was quite dismissive of it, it was like what are you complaining about”). Conclusions: Patients interpret the outcome of foot surgery using a multitude of interrelated factors, particularly functional ability, appearance and surgeons' appraisal of the procedure. While pain was often noted, this appeared less important than other factors in the overall outcome of the surgery. Future research into foot surgery should incorporate the complexity of how patients determine their outcome Disclosure statement: All authors have declared no conflicts of interes

    Spatial Accuracy of Climate Networks in Nebraska

    Get PDF
    Climate data has become increasingly scrutinized for its accuracy because of the need for reliable predictions about climate change. The U.S. has taken great strides to keep up with the demand for accurate climate data. Over the last thirty years, vast improvements to instrumentation, data collection, and station siting have created more accurate data records. This study is to explore the accuracy of existing networks. This study analyzes three climate networks used in Nebraska: the U.S. Historical Climatology Network (HCN), the Automated Weather Data Network (AWDN), and the newest network, the U.S. Climate Reference Network (CRN). Each of these networks has its own instrumentation, collection methods and station sites. Maximum and minimum surface temperature from the three networks and the spatial structure of temperature variations at the surface are compared. Two different timeframes, 2005-2009 and 1985-2005, were used to include the newest network, CRN, in the analysis. Daily data were collected from each of these networks within the specified timeframe. Root mean square error (RMSE) between each candidate station and the surrounding stations within 500 kilometers were calculated and evaluated to determine spatial accuracy of the network. This study found that in the 5 year analysis, CRN versus AWDN, the two networks were not significantly different enough to denote the network with high spatial accuracy. For the 21 year analysis, HCN versus AWDN, AWDN stations showed higher spatial accuracy (smaller error) than HCN stations for the variable of maximum temperature. The error for the two networks were not significantly different enough to decipher the network with the higher spatial accuracy. Advisors: Kenneth G. Hubbard & David B. Mar

    Spatial Accuracy of Climate Networks: A Case Study in Nebraska

    Get PDF
    Climate data are increasingly scrutinized for accuracy because of the need for reliable input for climaterelated decision making and assessments of climate change. Over the last 30 years, vast improvements to U.S. instrumentation, data collection, and station siting have created more accurate data. This study explores the spatial accuracy of daily maximum and minimum air temperature data in Nebraska networks, including the U.S. Historical Climatology Network (HCN), the Automated Weather Data Network (AWDN), and the more recent U.S. Climate Reference Network (CRN). The spatial structure of temperature variations at the earth’s surface is compared for timeframes 2005–09 for CRN and AWDN and 1985–2005 for AWDN and HCN. Individual root-mean-square errors between candidate station and surrounding stations were calculated and used to determine the spatial accuracy of the networks. This study demonstrated that in the 5-yr analysis CRN and AWDN were of high spatial accuracy. For the 21-yr analysis the AWDN proved to have higher spatial accuracy (smaller errors) than the HCN for both maximum and minimum air temperature and for all months. In addition, accuracy was generally higher in summer months and the subhumid area had higher accuracy than did the semiarid area. The findings of this study can be used for Nebraska as an estimate of the uncertainty associated with using a weather station’s data at a decision point some distance from the station
    corecore