7 research outputs found

    The influence of poultry litter biochar on early season cotton growth

    Get PDF
    Cotton is known for being sensitive to cool, wet soils, especially in the early stages of growth. Amendments to soil can aid cotton seedlings in development and nutrient uptake. However, soil amendments can be costly and detrimental to the environment, and alternatives such as the addition of biochar have been considered. Biochar is produced from biomass that has gone through pyrolysis and has been shown to improve plant yield, microbial response, soil structure, soil cation–exchange capacity, and water use efficiency. This study was conducted to evaluate the effect of biochar on early season cotton growth. The aim of this study was to determine whether biochar aids nutrient uptake and seedling development during the seedling’s life cycle. The study was established in October 2013 in the greenhouse at the University of Arkansas using a randomized complete block design with three replications. Treatments included a control with no fertilizer or biochar, a control with fertilizer (56 kg N/ ha) and no biochar, and two fertilizer treatments (0 or 56 kg N/ ha) each with 1500 or 3000 kg/ha biochar. Plants were grown for eight weeks then harvested to collect plant height, plant fresh weight, plant dry weight, and leaf area. Data showed that the highest level of biochar with additional fertilizer provided the best growth response in plant height, fresh weight dry weight, and leaf area at 27.52 cm, 14.7g, 1.87 g, and 419.48 cm2 , respectively

    Inelastic neutron scattering study of magnetic excitations in the kagome antiferromagnet potassium jarosite

    No full text
    We report an inelastic neutron scattering study of coherent magnetic excitations in powder and single-crystal samples of the model kagome antiferromagnet potassium iron jarosite, KFe3(OH)(6)(SO4)(2). Initial measurements on a natural single crystal using a triple-axis spectrometer revealed a mode with a zone-centre gap of 7 meV that showed little dispersion within the kagome layers, as well as some indication of a mode with a zone-boundary energy of approximately 20 meV. However, the high background from hydrogen in the sample made it very difficult to search for other excitations. In the absence of suitable deuterated crystals, measurements were performed on deuterated powders using time-of-flight neutron spectrometers over a range of temperatures that include T-N congruent to 64 K. This confirmed the flat 7 meV mode as well as dispersive modes that reached to higher energies. The origin of these modes is discussed in relation to the most likely Hamiltonian for the magnetic degrees of freedom in this material, and estimates are made of the strength of the nearest-neighbour exchange, J(1), and contributions from a Dzyaloshinsky-Moriya interaction or single-ion anisotropy arising from a crystal field

    Preliminary sulphur isotope data of diagenetic and vein sulphides in the Lower Palaeozoic strata of Ireland and southern Scotland: implications for Zn + Pb + Ba mineralization

    No full text
    Genetic models for many Irish Lower Carboniferous Zn + Pb ore deposits invoke a dual supply of sulphide. The dominant source is from the bacteriogenic reduction of Lower Carboniferous seawater sulphate, but a significant, minor supply is derived from deep-seated sources. The {delta}34S range of the latter component varies among the deposits: from the lightest range of —15% to 0% at Keel, to the heaviest of –4% to +14.4% in the Navan/Tatestown area. We hypothesize that such sulphur is leached mainly from diagenetic sulphide minerals in the underlying Lower Palaeozoic sediments. 6"s of pyrite in the Silurian/Ordovician Moffat Shales (—17.1% to —0.6%), and of sphalerite and galena in Lower Palaeozoic-hosted veins at Salterstown (—8.7% to -4.5%) and Wanlockhead (—10.3% to —5.1%) are consistent with the hypothesis. Below the Navan ore deposit, Lower Palaeozoic shales containing minor diagenetic pyrite with a very wide range in {delta}34S have been found; {delta}34S is typically heavy (+16%) but extreme values up to +62% are encountered. The general enrichment in {delta}34S is in accord with the noticeably heavy isotopic composition of deep-seated sulphur in the Navan orebody and its Tatestown satellite. Our preliminary results therefore suggest that geographical variations in the {delta}34S range of Lower Palaeozoic diagenetic -write_. may have contributed to the isotopic variation in the deep-seated sulphur among the Irish deposits
    corecore