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Potassium deficiency affects the carbon-nitrogen balancein cotton leaves

Wei HU®, Taylor D Coomef, Dimitra A Lokd*®, Derrick M Oosterhui8”, Zhiguo Zhot

& College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China

b Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive,
Fayetteville, AR 72704, USA

¢ Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion,UK
* Corresponding author.  E-mail: oosterhu@uark.edu (D.M. Oosterhuis) dig@ajau.edu.cn (Z.G. Zhou)

Abstract: Potassium (K) plays important roles in the metaiolof carbon (C) and nitrogen (N),
but studies of K deficiency affecting C-N balance kcking. This study explored the influence of
K deficiency on C-N interaction in cotton leaves @gynducting a field experiment with cotton
cultivar DP0912 under two K rates (KO: 0 kgdkha'and K67: 67 kg KO ha') and a controlled
environment experiment with K-deficient solution1(k0 mM K) and K-sufficient solution (K2: 6
mM K¥). The results showed that leaf K content, leaf beinleaf area, boll number, reproductive
dry weight and total dry weight were significantvier under K deficiency (KO or K1). Lower total
chlorophyll content and Chl a/b ratio, and decrd&® along with lowerGs and higherCi were
measured under K deficiency, suggesting that tleeedse inPn was resulted from non-stomatal
limitation. Leaf glucose, fructose, sucrose andcstacontents were higher under K deficiency,
because lower sucrose export was detected in phl@ddtnough leaf nitrate and ammonium
contents significantly decreased, free amino a@dtent was increased by 40-63% under K
deficiency, since lower amino acid export was asasured in phloem. K deficiency also induced
lower soluble protein content in leaves. Leaf AlRel was significantly increased under K
deficiency, indicating ATP ulitilization was loweso that less energy was supplied to C and N
metabolism. The ratio of soluble sugar to free amacid and the C/N ratio markedly increased
under K deficiency, and one reason was that thegphlexport reduced more prominent for sucrose
(54.6-78.0%) than amino acid (36.7-85.4%) under kficiency. In addition, lower
phosphoenolpyruvate carboxylase activity limited latea and citrate biosynthesis under K
deficiency, causing a decrease of C flux into timeina acids, which was not beneficial for
maintaining C-N balance. Sucrose phosphate syntwagdenitrate reductase activities were lower
under K deficiency, which would limit sucrose biaflyesis and nitrate assimilation. This was
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another factor altering soluble sugar to free anaicid ratio and C/N ratio in the K-deficient leaves
Keywords. Cotton Gossypium hirsutum L.) leaves; Potassium deficiency; Carbon-nitrogen

balance

Abbreviations: PEPCase, phosphoenolpyruvate carboxylase; SP®ssythosphate synthase; NR,
nitrate reductase; ATP, adenosine triphosphd&e, net photosynthetic rates, stomatal
conductance€i, intercellular CQ concentration; FW, fresh weight; DW, dry weightV§ specific

leaf weight

1. Introduction

Potassium (K) is important for ensuring optimalnplgrowth. Although K is not a constituent
of any tissue in plants, it is the most abundaatganic cation, comprising up to 10% of a plant’s
dry weight (White and Karley, 2010). K plays img@ort roles in numerous physiological and
metabolic processes, like maintenance of transmemebvoltage gradients, cation-anion balance
(White and Karley, 2010), osmotic potential and evatiptake (Kaiser, 1982), regulating the
movement of stomata (Humble and Raschke, 1971)aatidation of enzymes (Evans and Sorger,
1966). Investigators also reported that K is neef@dCO, assimilation (Hu et al., 2015) and
nitrogen (N) assimilation (Drosdoff et al., 1947).

Cotton Gossypium hirsutum L.) has a higher demand for K to maintain plamivgh and fiber
development than other crops with determinate drdwvabits. Many investigators reported that K
deficiency resulted in low seed cotton yield amd Yiield (Pettigrew, 1999), due to less boll number
(Li et al., 2012), lower boll weight (Gormus, 200&#)d lower lint percentage (Pettigrew, 1999). K
deficiency negatively affected cotton fiber quaktiincluding fiber length, uniformity ratio, fiber
strength, and micronaire (Pettigrew et al., 20@)me studies also indicated that K deficiency
would alter biomass accumulation and partitionipkhdum et al., 2007) and morphological
indices (Gerardeaux et al., 2009). K deficiency @fected numerous metabolic processexh as
carbon (C) metabolism and N metabolism. Zhao €2aD1) found that K deficiency could alter the
contents of sucrose and starch in leaves, anddfeemages of sucrose and starch accounting for

total carbohydrates. The activities of Rubiscoteslado CQ assimilation and cy-FBPase involved
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in the first step of sucrose synthesis were maykeeltluced by K deficiency (Hu et al., 2015).
Drosdoff et al. (1947) reported that Kas necessary for N metabolism in plants, bechi@gwas
transported together with Kn the xylem (Dong et al., 2004). Hu et al. (201650 observed that

K deficiency reduced N© allocation to the subtending leaves of cotton. sThik deficiency
affected the C and N metabolism in plants. Howeaerpmprehensive understanding of the effects
of K deficiency on C-N interaction is lacking.

Carbon metabolism and N metabolism are linked medhey share organic C and energy
supplied by photosynthetic electron transport, @&ation or respiration (Huppe and Turpin, 1994).
As a consequence, there are strong interactiongebat C assimilation and N assimilation in
metabolic processes and energy levels (Fait 2@l1). Between C assimilation and N assimilation,
the oxaloacetate-malate shuttle system servesvalva regulation the reduction of G@nd NQ,
and malateontent was closely linked to G@ssimilation and N® reduction (Backhausen et al.,
1994). Champigny (1995) observed that three enzyr(feBPCase, phosphoenolpyruvate
carboxylase; SPS, sucrose phosphate synthase;itdie meductase) play crucial roles in the C-N
interaction. In addition, an interaction betweena@d N metabolites is observed, because the
loading of amino acids depends on sucrose loadidgreass flow in the phloem (Wang et al., 2012),
and there is a fixed ratio of sucrose to aminosgidthe cytosol of phloem (Cakmak et al., 1994).
However, reports of the effects of K deficiency thwe interaction between sucrose transport and
amino acid transport in phloem are lacking.

Therefore, it was hypothesized that K deficiencylddnfluence C/N balance in cotton leaves
and change the export ratio of sucrose to amimbiagbhloem. The objectives of this study were (1)
to explore the effects of K deficiency on C metanl N metabolism and C/N balance in cotton
leaves in more detail, and (2) to investigate tfiects of K deficiency on the export of C and N
metabolites in phloem and its relationship with @#ance in leaves.

2. Materials and methods
2.1. Experiment design
2.1.1. Field study

A field experiment was arranged at then Mann Cotton Research Station in Marianna, AR
(34°5N, 90°8W) in the summer season of 2015. The available i€est in soil before sowing was
72.7 mg kg* which was below levels needed for optimal cottoowgh (Oosterhuis, 2002). The
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seeds were sowed on May 14 in Marianna. The cattdtivar DP 0912 was selected and a
randomized complete block was arranged with foplications. Two K fertilizer levels (KO: 0 kg
K,0 ha'and K67: 67 kg KO ha') were applied at the beginning of flowering stageeference to
our former study (Oosterhuis et al., 2014). Eadt pize was 4 m x 15 m with 1 m row spacing,
and the plant density was 74,000 plants-h&/eed and insect control was conducted as neetkd a
furrow irrigation was applied according to the Amkas irrigation scheduler program, which is
based on soil moisture balance and evapotrangpirati
2.1.2. Greenhouse study

A controlled environment (greenhouse) experimerd astablished at the Altheimer Laboratory,
University of Arkansas. The same cultivar was mdran January 20, 2015 in 2-L pots in two same
growth chambers (Conviron PGW36, Conviron Inc., hify)eg, Manitoba, Canada). The growth
chambers were set for a 12/12 h photoperiod, aoglnthetic flux density of 800-850mol i s?,
a relative humidity of 60% and temperatures of 307€ (day/night). Each growth chamber was
arranged with 24 pots and each pot just had or.pglme of the growth chambers was regarded as
an experiment repeated. The Hoagland’s nutrienitisol contained 6 mM K 2 mM NH;", 4 mM
Ca', 2 mM Mg, 1 mM Fé*, 3.7uM Mn?*, 0.77uM Zn**, 0.32uM CU**, 7.3uM CI~, 2 mM PQ*,
2 mM SQ?, 46 uM H3BO; and 0.12uM MoOs, and all pots were watered every two days with
one-quarter-strength K nutrient solution (1/4 sgtrK concentration in above Hoagland’s nutrient
solution through substituting NJNOs for KNO3) and with deionized water alternately until
flowering. Two treatments were established at tegirming of flowering stage, containing (1) a
treatment without K in the nutrient solution (K1:n@M K¥), and (2) a control with sufficient K
supply (K2: 6 mM K). Pots were re-randomized once a week in each lotyarftom seed
germination to the end of the experiment.
2.2. Sampling and processing

At 4 weeks after first flower (90 days after sowidgigust 12) the plants in the KO treatment
have showed severe K deficiency symptoms. Foureleat the fourth main-stem node from the
apex of the plant in each plot in the field expenmn were used for the measurement of
photosynthetic parameters, then were sampled fernteasurement of chlorophyll content by
removing five discs (0.75 cirper disc) in 80% acetone extracts (Lichtenthal®87), then the
leaves with petiole were transported on ice to ldie for the analyses of leaf K content,
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carbohydrates and N compounds. At 6 weeks aftelr ffower (104 days after sowingugust 26),
agronomic traits (height, fruiting branch numbesafl number, leaf area, boll number) were
measured. Leaf area was recorded by a LI-3100raster (LiCor, Linoln, NE, USA). The plants
above ground collected from one-meter row in edoh were divided into stems (and petioles),
leaves, and reproductive organs. Dry matter weightdhese parts were recorded after drying at
80 °C for 72 h.

In the greenhouse experiment, at 4 weeks aftarffower (80 days after sowing, April 10)
four leaves at the fourth main-stem node from {exaof the plant were used for the measurement
of photosynthetic parameters and chlorophyll cantéight leaves were sampled for leaf K content,
carbohydrates, N compounds and enzymes determisatiour leaves were used for collecting
phloem exudates. Agronomic traits and dry matteigkteof plants were also measured with four
replications at 6 weeks after first flower (94 dafter sowing, April 24).

2.3. Photosynthetic parameters

Before sampling the leaves at the fourth main-steade from the terminal of the plant,
photosynthetic parameters including net photosyithate Pn), stomatal conductandé&s) and
intercellular CQ concentration(Ci) were determined at 9:00-11:00 with a CI-340 hbhel
portable photosynthesis system (CID Bio-Science,, l@amas, WA, USA) for the field experiment
and the greenhouse experiment. Ambient air in ¢a& ¢dhamber was maintained at 30 °C, relative
humidity was 60% and C{xoncentration of the incoming air was ambient,Cahcentration.

24. Carbohydrates, N compounds, malate, citrate and adenosine triphosphate (ATP)
measurements

For field and greenhouse experiments, carbohydcatdents were extracted and assayed
according to Loka and Oosterhuis (2016) with sligiodification. 40 mg of dried tissue was heated
in 1 mL of 80% (v/v) ethanol at 80 °C three tim@dter combining the three supernatants, 80%
ethanol was added into the combined supernatamdsfittal volume of 3 ml. 30 mg of activated
charcoal was added to remove substatiwgscould interfere with the carbohydrate measerés)
The supernatant was used for measuring sucrosmsglland fructose contents after centrifuging at
10,000xg for 15 min. 2QL of extract was added to a 96-well microtitratigate and the plate was
put into a dryer to evaporate the ethanol.u20distilled water was added into each well and the
plate was incubated three consecutive times aC3for 15 min with 10QuL glucose assay reagent
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[glucose (HK) assay kit; Sigma Chemical Company, 3@ °C for 15 min with 10uL
phosphoglucose isomerase (0.25 EU, Sigma P-95dd)at30 °C for 60 min with 1QL invertase
(83 EU, Sigma 1-4504). After each incubation tirtiee absorbance was determined at 340 nm by a
microplate reader (Thermo Fisher Scientific Inc.altham, MA, USA). The ethanol-insoluble
residue was used for starch extraction. 0.5 mL KQHV) was added into the samples before
heating at 100 °C for 1 h. After coolinfsamylase and amyloglucosidase were added in ooder t
hydrolyze starch. The samples were centrifugedogdQDxg for 15 min, and the supernatant was
collected and diluted by deionized water to 3 ndclt sample extract (20L) was added into a
96-well microtitration plate to determine glucosecentration according to the method described
above. The starch concentration was calculatedrdicgpto Zhao et al. (2008).

For field and greenhouse experiments, nitrateg(IN@as extracted and measured according to
Ruiz and Romero (2002). Dried leaves (0.2 g) weteaeted with 10 mL Millipore-filtered water.
100 uL extract was taken into a tube and 0.2 mL of 19¢4) salicylic acid in sulphuric acid was
added. After 20 min, 4.75 ml of 8% NaOH was add&d each sample. After cooling to room
temperature, the absorbance was measured anml0Ammonium content was measured as
described previously (Lin and Kao, 1996) with stighodification. Leaf samples (0.2 g) were
extracted with 3 mL of 0.3 mM sulphuric acid (pHbB.Then the samples were centrifuged at
29,000x%g for 15 min. Clear supernatant (200 uL) didged by 0.3 mM sulphuric acid to 4 mL.
For the reaction, 0.5 mL of solution A (5 g pheaold 25 mg nitroprusside were dissolved in 100
mL water) and then 0.5 mL of solution B (2.5 g Na@dre added into 40 mL of 5% sodium
hypochlorite and then diluted by distilled waterl@0 mL) were added. Incubation was carried out
in a water bath at 37 °C for 20 min. The absorbamag determined atgs nm against the control
without extract. Ammonium contents were expressaghol g* dry weight (DW). The extraction
of free amino acid was the same as the extractiaradohydrate contents. Free amino acid was
measured using the ninhydrin method (Yemm et 855) and was expressed as nigdgy weight
(DW). Fresh leaf (0.3 g) was used for the extractod soluble protein according to Hu et al.
(2016b). The soluble protein content was determimed@radford reagent according to a previous
study (Bradford, 1976) using bovine serum albunsia standard.

The malate content of the samples from field aneeghouse experiments was assayed
according to Crecelius et al. (2003). 0.2 g freskvés were crushed in 1 ml 10% (w/v) perchloric

6
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acid with 20 mg polyclar AT. The homogenate wastrdeiged at 4,400xg for 5 min at 4 °C, and
then 2% (w/v) perchloric acid was added and thepéssnwere centrifuged again. The two
supernatants were pooled and neutralized usinglgEOW in 1 M ethanolamine. After adding 7%
(w/v) polyclar AT and incubation at 4 °C for 30 mihe mixture was centrifuged at 4400xg for 10
min at 4 °C. The malate content was measured byitororg NAD reduction at 340 nm. The
reaction buffer (98QL) contained 84.5 mM glycylglycine with a pH of 00.0.5 mM NAD, 43.0

mM glutamate, 3.0 units glutamate- oxaloacetatesamninase and 3.0 units malate dehydrogenase.
20 mL extract was added into the buffer to steetrémction.

For field and greenhouse experiments, citrate ettra and assay were according to
Moellering and Gruber (1967). 0.5 g fresh leavesewground in 10 mL of 0.6 M perchloric acid.
After centrifugation, the supernatant was neutealinsing 2 mL of 2 N KOH and then kept in an
ice bath for 15 min. After centrifugation againetupernatant was used for the determination of
citrate content. The reaction solution containé@®2nL of 0.1 M triethanolamine (pH 7.6), 0.01 mL
of 0.03 M ZnCl, 0.06 mL of 0.01M NADH and 0.1 mLteaction. The absorbance was monitored
at 366 nm for 5 min.

The ATP content of the samples from greenhousergwpet was determined according to a
previous study (Loka and Oosterhuis, 2016). Theaé tliscs per leaf were sampled using a cork
borer (1 cm in diameter), then three discs wereiiat a centrifuge tube with 5 mL of 50 mM
Tris—HCI solution (pH 7.3). The tubes were heated @ °C for 10 min before centrifuging at
21,000xg for 10 min. The supernatant was colledtedthe quantification of ATP. The firefly
luciferin-luciferase assay method (ATP bioluminegaessay kit; Sigma, ST. Louis, MO, USA) was
used and luminescence was measured with a 20/2@mnbmeter (Turner Bisosystems Inc.,
Sunnyvale, CA, USA). Luminescence of samples coetpavith that of standards having known
ATP concentration, and ATP content was expressegd as.

2.6. Enzyme extraction and analysisfor the greenhouse experiment

Sucrose phosphate synthase (SPS, E.C. 2.4.1.148xvasted as described previously (Huber
and Israel, 1982) with slight modification. The e¢@an solution (350uL) containing 50 mM of
extraction buffer, 10 mM of MgGl50 mM of UDP-glucose and 50 mM of fructose-6-P wdded
into the tubes, then 200 of enzyme extract was added. The mixtures werehated at 30 °C for
30 min. 100uL of NaOH (2 N) was used to terminate the reactéorg the mixtures were heated at

7
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100 °C for 10 min. After cooling, 3.5 mL of 30% H@&hd 1 mL of 0.1% resorcin in 95% ethanol
were added into the mixtures before heating at@@F 10 min. After cooling to room temperature,
the absorbance values were measured at 480 nnt @iy 2016a).

The determination of nitrate reductase (NR, EC611§.activity was according to the method
of Ding et al. (2006). Fresh leaves (0.3 g) weteslbed with 4 mL phosphate buffer (0.1 M, pH 7.5),
then the homogenate was centrifuged for 20 min2é@ADxg and 4 °C. The resulting supernatant
(0.4 mL) was added into the tubes, then 0.4 mLtmeamide adenine dinucleotide (NADH) and 1.2
mL of 0.1 M KNG; were added before incubating at 25 °C for 30 mime Blank solution was
added with 0.4 mL of 0.1 M sodium phosphate (pH h5lace of NADH. 1 mL sulphanilamide
was used to stop the reaction before adding 1%-22niphthylethylenediamine dihydrochloride (1
mL). After 15 min, the mixtures were centrifugedl1&,000xg for 10 min. The absorbance of the
supernatant was detected at 540 nm, and the enagtivéy was calculated from a standard curve
made using nitrite nitrogen.

Phosphoenolpyruvate carboxylase (PEPCase, EC 3l).lwas extracted and measured
according to Quy and Champigny (1992). Fresh led@e® g) were ground with 1 mL buffer
containing 50 mM Hepes-KOH (pH 7.4), 1 mM EDTA, MntEGTA, 10% glycerol, 1 mM DTT,
12 mM MgCb, 2 mM benzamidine and 2 mM e-amino-n-caproic agfter mixing, the suspension
was immediately stored at -80 °C until PEPCasevifigtanalysis. The reaction buffer (95()
contained 50 mM Tris-HCI (pH 7.6), 20nol NaHCQ, 130 nmol NADH, 1Qumol MgCh, 5 umol
DTT and 1 unit malate dehydrogenase, andub@®nzyme solution was added into the reaction
buffer. The reaction was started by adding 3j2Bol phosphoenolpyruvate at 30 °C. The
absorbance was measured at 340 nm.
2.7.Leaf K. Cand N contents determination

Leaf K content was measured according to Donohua.gt1992) using atomic absorption
techniques. Leaf C content was determined accotdittafsi et al. (2003) using a wet-combustion
method. Leaf N content were measured followingS&i-H,O, digestion method of Kjeldahl
(Nelson and Sommers, 1972). The KK and N contents were assayed by the Soils Testing
Laboratory, University of Arkansas, Fayetteville.

2.8. Phloem export of sucrose and free amino acid
Phloem exudates were collected using the EDTA-miktozording to Wang et al. (2012). The
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cut ends of the petioles were immediately immeiliséal 10 mL of 20 mM EDTA solution with a
pH of 6 in the dark for 15 min. In order to avoidntamination with xylem exudates, the 10 mL
EDTA solution was discarded. Then the leaves aloitiy petiole were washed and transferred to 10
mL fresh EDTA solution (20 mM). The leaves werecgld in the dark in an air-tight chamber in
high relative humidity and at ambient temperatim®ughout the collection period. After 5 h, the
exudation solutions were collected for measuringrage and amino acid concentrations according
to the methods described above (Yemm et al., 198 and Oosterhuis, 2016).

2.9. Data analysis

For the field experiment, data were analyzed ugiNgOVA test processed by SPSS statistic
package Version 17.0 (Hu et al., 2016a). Differsnoetween mean values were determined by the
least significant difference (LSD) test. All anadgsof significance were made at & 0.05 level.

All figures were drawn by Origin 8.0.

For the greenhouse experiment, there were no gigntf differences between the results
collected from the two growth chambers, so theltegtom the growth chambers were poolad.
data were subjected to ANOVA test with SPSS statipackage Version 17.0. Means were
separated using LSD test at P = 0.05. All figuresendrawn by Origin 8.0.

3. Results
3.1. Morphological indices

Height and fruiting branch number were little atfsd by K rate in the field experiment, but
height significantly decreased in the K1 treatmestative to K2 treatment (Table 1). Total leaf
number and leaf area were markedly reduced by 42/78053.9% in the KO treatment relative to
K67 treatment in the field experiment, and by 30&8d 21.9% in the K1 treatment compared with
K2 treatment in the greenhouse experiment. Boll memreproductive organs weight and total dry
weight were also significant in the K deficiencyQ(land K1) treatments relative to K application
treatments (K67 and K2).
3.2. Leaf K content, chlorophyll content and photosynthetic parameters

There were significant differences in leaf K cortcation between treatments (Table 2). The
leaf K concentration declined under K deficiencyiehh was 61.7% lower in the KO treatment than
K67 treatment, and was 67.9% lower in the K1 trestithan K2 treatment. There was a significant
(P<0.05) reduction in total chlorophyll content ofettiK-deficient treatments. K deficiency also
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significantly decreased the ratio of Chl aAm and Gs markedly decreased in the KO treatment
relative to K67 treatment and in the K1 treatmetative to K2 treatment (Table 2). Howeveél,
significantly increased under K deficiency. Speci@af weight (SLW) was significant higher in the
KO treatment relative to K67 treatment for thediexperiment and in the K1 treatment relative to
K2 treatment for the greenhouse experiment (Taple 2
3.3. Carbohydrate contents and N compounds contents

K deficiency resulted in significant alterationsaarbohydrate contents. Fructose content was
unaffected in the field experiment (Fig.1B), butswh73% higher in the K1 treatment than K2
treatment in the greenhouse experiment. The canta#nglucose (Fig. 1A), sucrose (Fig. 1C) and
starch (Fig. 1D) showed significant increases urifledeficiency.For the field experiment, the
contents of glucose, sucrose and starch were 30.4,and 38.4 mg bin the KO treatment and 5.2,
16.7 and 23.5 mghin the K67 treatment, respectively. For the greesskoexperiment, the
contents of glucose, sucrose and starch were 20.5,and 40.2 mggin the K1 treatment and 5.0,
14.4 and 23.7 mggin the KO treatment, respectively. Leaf nitratentemt (Fig. 1E) and leaf
ammonium content (Fig. 1F) were significant lowerthe KO treatment relative to K67 treatment
and in the K1 treatment compared with K2 treatmBietvertheless, this trend was not observed in
free amino acid content, because free amino aciteobsignificantly increased under K deficiency
(Fig. 1G). Similar to leaf nitrate and ammonium t&mts, soluble protein content was significantly
reduced by K deficiency (Fig. 1H), and a decreds29ao 36% was observed under K deficiency.
K deficiency significantly increased the ratio @luble sugar to free amino acid by 30-34% (Fig.
2A). C/N ratio was significant higher under K défacy (Fig. 2B).
3.4. Leaf malate, citrate and ATP contents

Leaf malate content was significantly affected byd&ficiency. A decrease of 65% in leaf
malate content was observed in the KO treatmeativel to K67 treatment and a decrease of 70%
was observed in the K1 treatment relative to Kattreent (Fig. 3A)K deficiency also resulted in a
significant decrease in leaf citrate content (RB). In the present study, leaf samples collected
from the greenhouse experiment were used for megsATP level. Contrary to malate content,
leaf ATP level was markedly increased by 40% in Kietreatment compared with K2 treatment
(Fig. 4).
3.5. Enzymes activities
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Leaf samples collected from the greenhouse expatimere used for the assays of enzymes.
Three enzymes (PEPCase, SPS and NR) were verytampon the C and N interaction. The
activity of PEPCase decreased by 52% in the Kirtreiat compared to K2 treatment (Fig. 5A). An
even greater decrease (69 %) was observed in SiR8yam the K1 treatment relative to K2
treatment (Fig. 5B). NR activity was 16.9 mg BW h' in the K1 treatment and was 30.8 my g
FW h' in the K2 treatment. (Fig. 5C).

3.6. Export of sucrose and amino acid

The export of sucrose was expected to reduce gigntfy under K deficiency, and the actual
level of sucrose export was significant lowEk(.01) in the K1 treatment than K2 treatment based
on a unit leaf or a unit leaf FW (Table 3). On tiesis of the ratio of sucrose content in phloem to
sucrose content in leaf (phloem:leaf ratio) pert bWV, an even greater decrease (78%) in K1
treatment compared with K2 treatment was obsemeticrose export. Consistent with the trend of
sucrose export, free amino acid export in phloens gignificantly reduced in the K1 treatment
relative to K2 treatment, decreasing by 52%, 40% @606 based on a unit leaf, per unit leaf fresh
weight and phloem:leaf ratio, respectively.

4. Discussion

Most of the K in plants is obtained from soil, asall K deficiency could negatively affect K
accumulation in plants and the distribution of Kvegetative organs (Hu et al., 2016a). In the
present study, leaf K content in the K deficien®atments was reduced to 0.62-0.71%, which was
obviously lower than critical leaf K levels (0.90%) in cotton leaves (Oosterhuis and Bednarz,
1997), indicating that the leaves from the planitheut K application were under severe K stress.
Zhao et al. (2001) reported that K deficiency woalter chloroplast ultrastructure and affect
pigment content in leaves. Total chlorophyll comteras significant lower in the KO and K1
treatments (Table 2), supporting their conclusidowever, the change of the ratio of Chl a/b in
Table 2 was inconsistent with their conclusion tKateficiency did not change the ratio of
chlorophyll a to chlorophyll b. Fritschi and RayO(®) reported that the relative proportion of
chlorophyll associated with the photosystem (PSgomplex and the PS core reaction center
complex decrease with a reduction in the Chl atm.rd.ower Chl a/b ratio in the KO and K1
treatments indicated that K deficiency influencld light absorption ability of leaf, and disrupted
the photochemical reactions of photosynthesis. Thilecreased®n was measured under K
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deficiency (Table 2). Bednarz et al. (1998) repbtteat if the non-stomatal limitations dominated
the reduction irPn, a decrease s and an increase @i were expected. In the present study,
lower Pn accompanied with loweBs and higherCi was observed in the KO and K1 treatments,
leading us to speculate that the decreaBedunder K deficiency was mainly caused by
non-stomatal limitation. Lower chlorophyll contearid Chl a/b ratio under K deficiency supported
this speculation. Basile et al. (2003) and Jinle{2911) found similar results in their experiment
with almond Prunus dulcis) and hickory Carya cathayensis Sarg.), in which the plants were under
severe K stress, biochemical factors became thendmfactor in the decrease .

Previous studies have reported that K deficiencyld/onhibit the C assimilation in leaves
(Zhao et al., 2001; Hu et al., 2015). In the préstndy, lowerPn under K deficiency supported
their conclusion; However, glucose, fructose, sseerand starch contents were markedly increased
under K deficiency (except fructose in the fieldoesment, Fig. 1A-D). Huber (1984) speculated
that the accumulated soluble sugars in the K-d&itdieaves of soybeafslycine max Merr.) might
be associated with the restricted export of sucfom® source to sink. In the present study, the
results presented in Table 3 showed that sucrgseresalculated a unit leaf, per unit FW of leaf or
the phloem:leaf ratio, was significantly reducedl@emK deficiency, supporting Huber’s speculation.
K™ gradients serving as a mobile energy source eresrgihloem loading (Gajdanowicz et al., 2011)
and sugar transporter ger@sBUT4) expression was decreased by K starvation (Jal.e2012).
Thus, lower sucrose export in phloem might be beealdeficiency limited the loading of sucrose
and the expression of sucrose transport proteikni@k et al., 1994). When massive sucrose could
not be transferred in time, it was more likely tmeert to other sugars (fructose, glucose andtlstarc
accumulating in leaves ( Zhao et al., 2001), resylin high SLW (Table 2). Previous study found
that K application could improve N metabolism, legdto an increased assimilation of N in tea
(Camellia sinensisL) leaves (Ruan et al., 1998). Hu et al. (2016bd abserved that K application
was conducived to the accumulations of N ands Né@ntents in the leaves. Similar results were
measured in the present study. Leaf nitrate contest decreased by 30-34% in the K-deficient
leaves (Fig. 1E) and leaf ammonium content also 3@85% lower under K deficiency (Fig. 1F),
which was because the absorption and transporitrateénand ammonium could be inhibited under
K stress (Armengaud et al., 2009; Gajdanowicz .eRfll1l). Those changes were not beneficial for
the biosynthesis of amino acid, but free amino @cidtent was 40-63% higher in the K-deficient
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leaves (Fig. 1G), perhaps because K deficiencylerated protein degradation to form amino acid
(Hu et al., 2016b). In the present study, amino aaigort declined by 36.7% or 41.0% in the K1
treatment compared with K2 treatment based on &lesi or per unit leaf FW, and reduced more
(85.4%) when evaluated using the phloem:leaf ratidicating lower amino acid export in phloem
was also one of the reasons for high free amind @mntent accumulated in the K-deficient leaves.
Moreover, high free amino acid content in the Kicleht leaves might be another reason for the
high SLW (Table 2). In accordance with our resulisjao et al. (1970) observed a significant
increase in free amino acid content in the K-defitieaves of corrZéa mays L.). On the contrary,
leaf soluble protein content was significant lowethe K1 treatment than K2 treatment (Fig. 1H),
indicating that amino acid could not be succesgfulted for synthesizing protein under K
deficiency, although amino acid accumulated shaigly et al. (2016b) observed that K deficiency
would alter the distribution of nitrogenous compdsitbetween amino acids and proteins, and this
change was shown as a higher ratio of free aming t@c protein in the K-deficient leaves
(0.71-0.81) relative to K-sufficient leaves (0.3B) in the current study. Similarly, Wahab and
Abd-Alla (1995) observed that K deficiency sign#itly decreased protein content in their
experiment with faba beakitia faba L.).

Photosynthetic apparatuses including Rubisco, stt@nzymes and thylakoid proteins, are
highly dependent on N metabolism in leaves, becphstosynthesis requires a large amount of N
for the incorporation of COand water into sugars (Champigny, 1995). The redupower and
energy needed for N assimilation mainly depend omefabolism (Wang et al., 2015). Thus, C
metabolism and N metabolism are closely interwoaed compete for organic precursors and
reducing power. Hartt (1970) noticed that ATP sgsth would be restricted by K stress in
sugarcane Saccharum spp.) leaves. Conversely, Latzko (1965) observed the levels of ATP
were strongly enhanced in the K-deficient barldyoreum wvulgare L.) roots relative to
K-sufficient roots. In this work, leaf ATP level waignificant higher in the K1 treatment than K2
treatment (Fig. 4). This was probably because AT utilization was inhibited more than ATP
synthesis, which would affect the potential enesgpply for the metabolism of C and N. Amino
acids are the main product of N assimilation whigh compete with C assimilation for the C
skeletons. The result in Fig. 2A showed that the raf soluble sugar to free amino acid was
markedly increased under K deficiency, indicatihgttthe increase in soluble sugar content was
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more pronounced than free amino acid content irKtaeficient leaves, which led us to speculate
that the influences of K deficiency were greatei@metabolism than N metabolism. In support of
this speculation, higher C/N ratio was observedhm K-deficient leaves (Fig. 2B). Zhang et al.
(2014) noticed that high C/N ratio in cotton leavess conducive to the growth of reproductive
organs. However, higher C/N ratio in the K-defitideaves did not cause higher weight of
reproductive organs in our study (Table 1) becausgose and free amino acid accumulated in
K-deficient leaves could not be transferred to ptbegans. Consequently, other agronomic
characters were also altered, including low leafhber, leaf area, boll number and total dry weight
(Table 1). Wang et al. (2012) speculated that phlé@ading of amino acid depended greatly on
sucrose loading and mass flow in the phloem. Adddily, Cakmak et al. (1994) reported that there
was a fixed ratio of sucrose to amino acids inaytesol of phloem. Our results showed that on the
basis of a unit leaf or per unit leaf FW, the ratsucrose transport was 64-65 times greater than t
transport rate of amino acid in the K1 treatment ib was 85-86 times in the K2 treatment,
suggesting that compared with amino acid expoet,silicrose export in phloem was reduced more
significantly under K deficiency. This result couddplain a larger ratio of soluble sugar to free
amino acid and larger ratio of C to N occurredha K-deficient leaves and supported our above
speculation that the influences of K deficiency evgreater on C metabolism than N metabolism.
Three enzymes are very important for the C and teraction, namely PEPCase, NR and SPS,
which play important roles in the anapleurotic Q®ation, N assimilation, and sucrose synthesis,
respectively (Champigny, 1995). Ins-plants, PEPCase plays a crucial role in the orgacid
biosynthesis by catalyzing the carboxylation of REProduce oxaloacetate when the demand for
organic acid in amino acid biosynthesis increaggsfecantly (Champigny and Foyer, 1992). Thus,
it is a key enzyme of the anapleurotic pathway.tHa present study, PEPCase activity was
significant lower in the K1 treatment relative t® Kreatment (Fig. 5A), which would cause a
decrease of C flux into the tricarboxylic acid @clinhibiting organic acid biosynthesis
(Champigny and Foyer, 1992). Lower malate andteittantents measured in the K1 treatment (Fig.
2C) supported this and lower malate and citratetesda would result in less 2-oxoglutarate
participating in the process of amino acid synthesider K deficiency, limiting the amino acid
synthesis to affect the C/N ratio in leaves. Arnarjet al. (2009) also found a decrease in malate
content inArabidopsis roots under K stress. In addition, SPS and NRvities were significant
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lower in the K1 treatment than K2 treatment, beeadkisdeficiency limited the expression 8PS
gene(Li et al., 2011)andNRT2 gene (Armengaud et al., 2004). Lower SPS and NiRitges would
limit sucrose biosynthesis and nitrate assimilatioder K deficiency, leading us to conclude that
this was another factor altering the ratio of stdutugar to free amino acid and the C/N ratio under
K deficiency. In support of our speculation, loviR activity together with changed C/N ratio was
measured in the K-deficieArabidopsis roots (Armengaud et al., 2009).
5. Conclusion
Decreasedn accompanied with lowe6s and higherCi was measured in the K-deficient

leaves, suggesting that the decredBedvas mainly caused by non-stomatal limitation, Wwhicas
supported by lower chlorophyll content and Chl edhio under K deficiency. The contents of
glucose, fructose, sucrose and starch were marlkeciigased under K deficiency (except fructose
in the field experiment), because decreased suexsert rate was measured in the phloem. Leaf
nitrate and ammonium contents were reduced, whiab mot beneficial for the biosynthesis of
amino acid, but free amino acid content was highdhe K-deficient leaves, since K deficiency
resulted in lower export rate of amino acid in gidoem. K deficiency also limited amino acid to
produce protein, so lower soluble protein conteas wbserved under K deficiency. Leaf ATP level
was significantly increased under K deficiency, d&aese ATP utilization was restricted for the
metabolism of C and N. The ratio of soluble sugafrée amino acid and the ratio of C/N were
markedly increased under K deficiency, becausestioeose export in phloem was reduced more
than amino acid export under K deficiency. Imbaéamt C/N ratio and transport rate under K
deficiency decreased leaf number, leaf area, hothlyver, reproductive dry weight and total plant
dry weight. In addition, PEPCase activity was lowader K deficiency, which would limit the C
flux into the tricarboxylic acid cycle to inhibitatate and citrate biosynthesis, causing a decidase
C flux into amino acid synthesis under K deficien8?S and NR were decreased in the K-deficient
leaves, which would limit sucrose biosynthesis aitchte assimilation, which was another reason
for altered soluble sugar to free amino acid ratid C/N ratio in the K-deficient leaves.
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Figurelegends

Fig. 1 Effects of K deficiency on (A) glucose, (B) frucegqC) sucrose, (D) starch, (E) nitrate, (F)
ammonium, (G) free amino acid and (H) protein cotgeof the leaves. For field experiment or
greenhouse experiment, columns followed by diffetetiers are significantly different &=0.05
level. All values are means of four replicationstandard error.

Fig. 2 Effects of K deficiency on (A) soluble sugar todramino acid ratio and (B) C/N ratio of the
leaves. For field experiment or greenhouse expeariyrelumns followed by different letters are
significantly different aP=0.05 level. All values are means of four replicas + standard error.

Fig. 3 Effects of K deficiency on (A) malate content al] €itrate content of the leaves. For field
experiment or greenhouse experiment, columns fatbvy different letters are significantly
different atP=0.05 level. All values are means of four replicas + standard error.

Fig. 4 Effects of K deficiency on adenosine triphosphaA&R) level of the leaves from the
greenhouse experiment. Columns followed by diffetetters are significantly different &=0.05
level. All values are means of four replicationstandard error.

Fig. 5 Effects of K deficiency on (A) phosphoenolpyruvateboxylase (PEPCase), (B) sucrose
phosphate synthase (SPS) and (C) nitrate reduqtdBe activities of the leaves from the
greenhouse experiment. Columns followed by diffefetters are significantly different &=0.05
level. All values are means of four replicationstandard error.
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Table 1 Effects of K deficiency on agronomic characterstted plants for field and greenhouse
experiments.

Fruiting branch Total leaf Reproductive dryTotal dry

Height Leaf area Boll number ) )
Treatment number number 1 weight weight
cm) (cn? plant?) (no. plant) L L
(no. plant)  (no. plant) (g plant) (g plant))
Field
KO 83.7a 12.3a 36.5b 1662.5b 11.5b 30.7b 81.5b
K67 93.7a 13.7a 63.7a 3606.1a 20.3a 76.0a 132.1a
Greenhouse
K1 122.0b 15.8a 45.6b 4673.3b 7.6b 30.2b 93.6b
K2 132.3a 18.6a 66.0a 5981.6a 14.8a 48.7a 123.7a

For field or greenhouse experiment, values follolwgd different letter within the same column agmiicantly
different atP = 0.05 probability level. Each value represengsrttean of four replications.



Table 2 Effects of K deficiency on leaf K concentrationhlarophyll a+b, Chl a/b, net
photosynthetic ratePf)), stomatal conductancesg), intercellular CQ concentration i) and
specific leaf weight (SLW) of the leaves for fieldd greenhouse experiments.

Leaf K Chlatb Pn Gs Ci SLW
Treatment i - 2 1 2 1 1 2
concentration (%) (mg m") (wmol m“s”)  (mmol m“s~) (umol mol”) (g m?)
Field
KO 0.62b 60.9b 2.04b 3.32b 71.85b 405b 86.7a
K67 1.62a 414.4a 2.94a 15.67a 176.71a 369a 67.0b
Greenhouse
K1 0.71b 108.1b  2.25b 4.78b 83.25b 399a 64.9a
K2 2.21a 459.3a  2.95a 16.49a 223.12a 338b 53.8b

For field or greenhouse experiment, values followgd different letter within the same column agm#icantly
different atP = 0.05 probability level. Each value representsniean of four replications.



Table 3 Effect of K deficiency on phloem export of sucrosed amino acid for the fourth
main-stem leaves from the terminal of the planttfe greenhouse experiment. Phloem exudates
were collected from detached leaves using the EBiBAiod. All values are means of four

replications. ** indicates that the differencesvbetn two treatments are significant R#¢0.01
probability level.

Sucrose Free amino acid
Export per  Export per unit  Phloem/leaf Export per  Export per unit Phloem/leaf
Treatment ) 1 1
leaf* FW (ng g* FW leaf FW (ng g* FW

(ug h'*leaf) (ug g* FW HY) h'mg g* DW) (ng h'leaf) (ugg*FWHY)  hYmg g' Dw)
K1 40.61£3.41 20.242.23 0.695+0.026  0.621+0.049 0.311+0.028 0.022+0.002
K2 112.3+2.74 44.515.05 3.163+0.316  1.303+0.092 0.521+0.072 0.064+0.009

Slgnlflcance ** ** *%* *%* *%* *%*

! Exported sucrose or free amino acid per hourese |
2 Exported sucrose or free amino acid per hour pifeaf fresh weight.
% Ratio of exported sucrose or amino acid contephioem exudates to that in leaf per unit leafwejght.
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Highlights

(1) K deficiency increased soluble sugar to free amino acid ratio and C/N radio.

(2) The sucrose transport in phloem was reduced more than amino acid transport
under K deficiency.

(3) ATP level increased under K deficiency, affecting the energy supply for C and N
metabolism.

(4) Lower PEPCase avtivity limited malate and citrate biosynthesis under K
deficiency, which was not beneficial for maintaining C-N balance.

(5) SPS and NR decreased under K deficiency, which might be another reason altering
CIN ratio.
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