4,148 research outputs found

    Fabric anisotropy & DEM informed two-surface hyperplasticity : constitutive formulation, asymptotic states & experimental validation.

    Get PDF
    In geotechnical analysis continuum idealisations of the bulk material still provide the most appropriate approach for engineers designing large-scale structures. In this area, the most successful framework for describing the behaviour of soils is Critical State (CS) soil mechanics. However, the findings from discrete element method (DEM) analysis, such as the uniqueness of the CS, can provide invaluable information in the development such models. This paper details the key concepts behind a two-surface hyperplasticity model (?) whose development was informed by recent DEM findings on the uniqueness of the CS. Asymptotic states of the model will be confirmed and the DEM-continuum-experimental loop will be closed through comparison of the developed model with experimental data on coarse-grained particulate media. This will demonstrate, that providing the previous stress history is accounted for, the proposed model is suitable for a variety of particulate media

    Microbiological influences on fracture surfaces of intact mudstone and the implications for geological disposal of radioactive waste

    Get PDF
    The significance of the potential impacts of microbial activity on the transport properties of host rocks for geological repositories is an area of active research. Most recent work has focused on granitic environments. This paper describes pilot studies investigating changes in transport properties that are produced by microbial activity in sedimentary rock environments in northern Japan. For the first time, these short experiments (39 days maximum) have shown that the denitrifying bacteria, Pseudomonas denitrificans, can survive and thrive when injected into flow-through column experiments containing fractured diatomaceous mudstone and synthetic groundwater under pressurized conditions. Although there were few significant changes in the fluid chemistry, changes in the permeability of the biotic column, which can be explained by the observed biofilm formation, were quantitatively monitored. These same methodologies could also be adapted to obtain information from cores originating from a variety of geological environments including oil reservoirs, aquifers and toxic waste disposal sites to provide an understanding of the impact of microbial activity on the transport of a range of solutes, such as groundwater contaminants and gases (e.g. injected carbon dioxide)

    An implicit high-order material point method.

    Get PDF
    The material point method (MPM) is a version of the particle-in-cell (PIC) which has substantial advantages over pure Lagrangian or Eulerian methods in numerical simulations of problems involving large deformations. The MPM helps to avoid mesh distortion and tangling problems related to Lagrangian methods and as well as the advection errors associated with Eulerian methods. Despite the MPM being promoted for its ability to solve large deformation problems the method suffers from instabilities when material points cross between elements. These instabilities are due to the lack of smoothness of the grid basis functions used for mapping information between the material points and the background grid. In this paper a novel high-order MPM is developed to eliminate the cell-crossing instability and improve the accuracy of the MPM method

    Zika Virus Infection Disrupts Astrocytic Proteins Involved in Synapse Control and Axon Guidance

    Get PDF
    The first human Zika virus (ZIKV) outbreak was reported in Micronesia in 2007, followed by one in Brazil in 2015. Recent studies have reported cases in Europe, Oceania and Latin America. In 2016, ZIKV transmission was also reported in the US and the World Health Organization declared it a Public Health Emergency of International Concern. Because various neurological conditions are associated with ZIKV, such as microcephaly, Guillain-Barré syndrome, and other disorders of both the central and peripheral nervous systems, including encephalopathy, (meningo)encephalitis and myelitis, and because of the lack of reliable patient diagnosis, numerous ongoing studies seek to understand molecular mechanisms underlying ZIKV pathogenesis. Astrocytes are one of the most abundant cells in the CNS. They control axonal guidance, synaptic signaling, neurotransmitter trafficking and maintenance of neurons, and are targeted by ZIKV. In this study, we used a newly developed multiplexed aptamer-based technique (SOMAScan) to examine > 1300 human astrocyte cell proteins. We identified almost 300 astrocyte proteins significantly dysregulated by ZIKV infection that span diverse functions and signaling pathways, including protein translation, synaptic control, cell migration and differentiation

    Gradient elasto-plasticity with the generalised interpolation material point method.

    Get PDF
    The modelling of geomechanics problems can require a method that allows large deformations and non-linear material behaviour, in this respect the Generalised Material Point Method (GIMPM) is ideal. A fully implicit version of GIMPM has recently been developed for geomechanics problems and some aspects of its implementation are described here. An area that has received less attention in material point methods is that conventional analysis techniques constructed in terms of stress and strain are unable to resolve structural instabilities such as shear banding. This is because they do not contain any measure of the length of the microstructure of the material analysed, such as molecule size or grain structure. Gradient theories provide extensions of the classical equations with additional higher-order terms. The use of length scales makes it possible to model a finite thickness shear band which is not possible with traditional methods. Much work has been done on using gradient theories to include the effect of microstructure in the finite element method (and other numerical analysis techniques) however this yet to be combined with material point methods. In this paper the key equations that are required to extend the implicit GIMPM method to include gradient elasto-plasticity are detailed

    Age Is Not a Barrier: Older Adults With Cancer Derive Similar Benefit in a Randomized Controlled Trial of a Remote Symptom Monitoring Intervention Compared With Younger Adults

    Get PDF
    This study investigated a remote symptom monitoring intervention to examine if older participants with cancer received a similar magnitude of benefit compared with younger adults with cancer. We analyzed a longitudinal symptom monitoring intervention for 358 participants beginning a new course of chemotherapy treatment in community and academic oncology practices. The study design was a randomized control trial; participants were randomized to the intervention or usual care, the intervention was delivered during daily automated coaching. Older adults with moderate and severe symptoms derived similar benefit as those adults younger than 60 years of age, adherence to the study protocol which involved daily calls was high. There was no significant difference between the 2 age categories; on average, older adult participants made 88% of expected daily calls and younger adult participants made 90% of expected daily calls. Our results challenge the perception that older adults are unwilling or unable to use a technological tool such as interactive voice response and suggest that patient utilization may be guided by other factors, such as ease of use and perceived benefit from the intervention

    Dynamics of cubic-tetragonal phase transition in KNbO3_3 perovskite

    Full text link
    The low-energy part of the vibration spectrum in KNbO3_3 was studied by cold neutron inelastic scattering in the cubic phase. In addition to acoustic phonons, we observe strong diffuse scattering, which consists of two components. The first one is quasi-static and has a temperature-independent intensity. The second component appears as quasi-elastic scattering in the neutron spectrum indicating a dynamic origin. From analysis of the inelastic data we conclude that the quasi-elastic component and the acoustic phonon are mutually coupled. The susceptibility associated with the quasi-elastic component grows as the temperature approaches TC_C

    Immersive virtual reality enables technical skill acquisition for scrub nurses in complex revision total knee arthroplasty.

    Get PDF
    INTRODUCTION: Immersive Virtual Reality (iVR) is a novel technology which can enhance surgical training in a virtual environment without supervision. However, it is untested for the training to select, assemble and deliver instrumentation in orthopaedic surgery-typically performed by scrub nurses. This study investigates the impact of an iVR curriculum on this facet of the technically demanding revision total knee arthroplasty. MATERIALS AND METHODS: Ten scrub nurses completed training in four iVR sessions over a 4-week period. Initially, nurses completed a baseline real-world assessment, performing their role with real equipment in a simulated operation assessment. Each subsequent iVR session involved a guided mode, where the software taught participants the procedural choreography and assembly of instrumentation in a simulated operating room. In the latter three sessions, nurses also undertook an assessment in iVR. Outcome measures were related to procedural sequence, duration of surgery and efficiency of movement. Transfer of skills from iVR to the real world was assessed in a post-training simulated operation assessment. A pre- and post-training questionnaire assessed the participants knowledge, confidence and anxiety. RESULTS: Operative time reduced by an average of 47% across the 3 unguided sessions (mean 55.5 ± 17.6 min to 29.3 ± 12.1 min, p > 0.001). Assistive prompts reduced by 75% (34.1 ± 16.8 to 8.6 ± 8.8, p < 0.001), dominant hand motion by 28% (881.3 ± 178.5 m to 643.3 ± 119.8 m, p < 0.001) and head motion by 36% (459.9 ± 99.7 m to 292.6 ± 85.3 m, p < 0.001). Real-world skill improved from 11% prior to iVR training to 84% correct post-training. Participants reported increased confidence and reduced anxiety in scrubbing for rTKA procedures (p < 0.001). CONCLUSIONS: For scrub nurses, unfamiliarity with complex surgical procedures or equipment is common. Immersive VR training improved their understanding, technical skills and efficiency. These iVR-learnt skills transferred into the real world

    Combining simulation modeling and stable isotope analyses to reconstruct the last known movements of one of Nature’s giants

    Get PDF
    The spatial ecology of rare, migratory oceanic animals is difficult to study directly. Where incremental tissues are available, their chemical composition can provide valuable indirect observations of movement and diet. Interpreting the chemical record in incremental tissues can be highly uncertain, however, as multiple mechanisms interact to produce the observed data. Simulation modeling is one approach for considering alternative hypotheses in ecology and can be used to consider the relative likelihood of obtaining an observed record under different combinations of ecological and environmental processes. Here we show how a simulation modeling approach can help to infer movement behaviour based on stable carbon isotope profiles measured in incremental baleen tissues of a blue whale (Balaenoptera musculus). The life history of this particular specimen, which stranded in 1891 in the UK, was selected as a case study due to its cultural significance as part of a permanent display at the Natural History Museum, London. We specifically tested whether measured variations in stable isotope compositions across the analysed baleen plate were more consistent with residency or latitudinal migrations. The measured isotopic record was most closely reproduced with a period of residency in sub-tropical waters for at least a full year followed by three repeated annual migrations between sub-tropical and high latitude regions. The latitudinal migration cycle was interrupted in the year prior to stranding, potentially implying pregnancy and weaning, but isotopic data alone cannot test this hypothesis. Simulation methods can help reveal movement information coded in the biochemical compositions of incremental tissues such as those archived in historic collections, and provides context and inferences that are useful for retrospective studies of animal movement, especially where other sources of individual movement data are sparse or challenging to validate.© 2019 Trueman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited
    • …
    corecore