15 research outputs found

    Evolution of the nuclear spin-orbit splitting explored via the <sup>32</sup>Si<i>(d,p)</i><sup>33</sup>Si reaction using SOLARIS

    Get PDF
    The spin-orbit splitting between neutron 1p orbitals at 33Si has been deduced using the single-neutron-adding (d,p) reaction in inverse kinematics with a beam of 32Si, a long-lived radioisotope. Reaction products were analyzed by the newly implemented SOLARIS spectrometer at the reaccelerated-beam facility at the National Superconducting Cyclotron Laboratory. The measurements show reasonable agreement with shell-model calculations that incorporate modern cross-shell interactions, but they contradict the prediction of proton density depletion based on relativistic mean-field theory. The evolution of the neutron 1p-shell orbitals is systematically studied using the present and existing data in the isotonic chains of = 17, 19, and 21. In each case, a smooth decrease in the separation of the - orbitals is seen as the respective p-orbitals approach zero binding, suggesting that the finite nuclear potential strongly influences the evolution of nuclear structure in this region

    Tolerance of aluminium toxicity in annual Medicago species and lucerne

    Get PDF
    A rapid (7 day) solution-based screening test was developed using 15 annual Medicago cultivars and one M. sativa. Based on a relative root regrowth after exposures to aluminium (Al), Zodiac (M. murex), Orion (M. sphaerocarpos) and the M. polymorha cultivars Santiago, Cavalier and Serena had the greatest Al tolerance. Herald (M. littoralis) and Rivoli (M. tornata) were most sensitive. Ranking for Al tolerance from the solution culture correlated well (r = 0.80) with ranking for tolerance of the 16 genotypes grown in an acidic soil (unlimed pHCa 4.1). We screened 17 Australian populations of lucerne (M. sativa) using a 24 h ‘pulse’ of 75 µmol/L Al, and a three day ‘recovery’ of 10 µmol/L Al. We identified and recovered plants with a root regrowth of ≥5 mm in all 17 populations with selection intensities of 2 to 4%. Four of these selected populations (Aurora, UQL-1, A513 and TO2-011) were polycrossed within each population to produce four populations of seed from the cycle 1 selections. The length of root regrowth under Al stress was improved for all four populations of cycle 1 selection (P ≤ 0.001; from 2.6 mm for the original populations to 6.3 mm for the cycle 1 selections). In a subsequent experiment the cycle 2 selections from Aurora, UQL-1 and TO2-011 had significantly greater root regrowth than both the cycle 1 selections (P ≤ 0.001; 8.3 cf. 6.6 mm) and the unselected populations (3.0 mm). The selections from TO2-011 appeared to have greater improvement in the average length of root regrowth after 2 cycles of selection. Selected germplasm was more tolerant than GAAT in our evaluation. Based on estimation of realised heritability, it seemed likely that higher selection intensities would give more rapid improvements in tolerance. Our studies have not investigated the physiological basis of any tolerance of Al which we observed

    Emerging nuclear collectivity in 124−130^{124-130}Te

    No full text
    International audienceThe emergence of nuclear collectivity near doubly-magic 132Sn was explored along the stable, eveneven 124−130Te isotopes. Preliminary measurements of the B(E2; 41+ → 21+) transition strengths are reported from Coulomb excitation experiments primarily aimed at measuring the g factors of the 41+ states. Isotopically enriched Te targets were excited by 198-205 MeV 58Ni beams. A comparison of transition strengths obtained is made to large-scale shell-model calculations with successes and limitations discussed

    Shape polarization in the tin isotopes near N=60N=60 from precision gg-factor measurements on short-lived 11/2−11/2^- isomers

    No full text
    International audienceThe g factors of 11/2− isomers in semimagic 109Sn and 111Sn (isomeric lifetimes τ=2.9(3) ns and τ=14.4(7) ns, respectively) were measured by an extension of the Time Differential Perturbed Angular Distribution technique, which uses LaBr3 detectors and the hyperfine fields of a gadolinium host to achieve precise measurements in a new regime of short-lived isomers. The results, g(11/2−;109Sn)=−0.186(8) and g(11/2−;111Sn)=−0.214(4), are significantly lower in magnitude than those of the 11/2− isomers in the heavier isotopes and depart from the value expected for a near pure neutron h11/2 configuration. Broken-symmetry density functional theory calculations applied to the sequence of 11/2− states reproduce the magnitude and location of this deviation. The g(11/2−) values are affected by shape core polarization; the odd 0h11/2 neutron couples to Jπ=2+,4+,6+... configurations in the weakly-deformed effective core, causing a decrease in the g-factor magnitudes
    corecore