1,327 research outputs found

    The AGN Contribution to the Mid-IR Emission of Luminous Infrared Galaxies

    Full text link
    We determine the contribution of AGN to the mid-IR emission of luminous infrared galaxies (LIRGs) at z>0.6 by measuring the mid-IR dust continuum slope of 20,039 mid-IR sources. The 24 micron sources are selected from a Spitzer/MIPS survey of the NOAO Deep Wide-Field Survey Bo\"otes field and have corresponding 8 micron data from the IRAC Shallow Survey. There is a clear bimodal distribution in the 24 micron to 8 micron flux ratio. The X-ray detected sources fall within the peak corresponding to a flat spectrum in nufnu, implying that it is populated by AGN-dominated LIRGs, whereas the peak corresponding to a higher 24 micron to 8 micron flux ratio is likely due to LIRGs whose infrared emission is powered by starbursts. The 24 micron emission is increasingly dominated by AGN at higher 24 micron flux densities (f_24): the AGN fraction of the z>0.6 sources increases from ~9% at f_24 ~ 0.35 mJy to 74+/-20% at f_24 ~ 3 mJy in good agreement with model predictions. Deep 24 micron, small area surveys, like GOODS, will be strongly dominated by starburst galaxies. AGN are responsible for ~ 3-7% of the total 24 micron background.Comment: 6 pages, accepted for publication in Ap

    XMM-Newton X-ray and optical observations of the globular clusters M 55 and NGC 3201

    Full text link
    We have observed two low concentration Galactic globular clusters with the X-ray observatory XMM-Newton. We detect 47 faint X-ray sources in the direction of M 55 and 62 in the field of view of NGC 3201. Using the statistical Log N-Log S relationship of extragalactic sources derived from XMM-Newton Lockman Hole observations, to estimate the background source population, we estimate that very few of the sources (1.5+/-1.0) in the field of view of M 55 actually belong to the cluster. These sources are located in the centre of the cluster as we expect if the cluster has undergone mass segregation. NGC 3201 has approximately 15 related sources, which are centrally located but are not constrained to lie within the half mass radius. The sources belonging to this cluster can lie up to 5 core radii from the centre of the cluster which could imply that this cluster has been perturbed. Using X-ray (and optical, in the case of M 55) colours, spectral and timing analysis (where possible) and comparing these observations to previous X-ray observations, we find evidence for sources in each cluster that could be cataclysmic variables, active binaries, millisecond pulsars and possible evidence for a quiescent low mass X-ray binary with a neutron star primary, even though we do not expect any such objects in either of the clusters, due to their low central concentrations. The majority of the other sources are background sources, such as AGN.Comment: 12 pages, 7 figures, accepted to be published in A&

    Another Faint UV Object Associated with a Globular Cluster X-Ray Source: The Case of M92

    Full text link
    The core of the metal poor Galactic Globular Cluster M92 (NGC 6341) has been observed with WFPC2 on the Hubble Space Telescope through visual, blue and mid-UV filters in a program devoted to study the evolved stellar population in a selected sample of Galactic Globular Clusters. In the UV (m255,m255U)(m_{255}, m_{255}-U) color magnitude diagram we have discovered a faint `UV-dominant' object. This star lies within the error box of a Low Luminosity Globular Cluster X-ray source (LLGCX) recently found in the core of M92. The properties of the UV star discovered in M92 are very similar to those of other UV stars found in the core of some clusters (M13, 47 Tuc, M80, etc)---all of them are brighter in the UV than in the visible and are located in the vicinity of a LLGCX. We suggest that these stars are a new sub-class of cataclysmic variables.Comment: 21 pages, 4 figures. Astrophysical journal in pres

    A fundamental test of the Higgs Yukawa coupling at RHIC in A+A collisions

    Full text link
    Searches for the intermediate boson, W±W^{\pm}, the heavy quantum of the Weak Interaction, via its semi-leptonic decay, We+νW\to e +\nu, in the 1970's instead discovered unexpectedly large hadron production at high pTp_T, notably π0\pi^0, which provided a huge background of e±e^{\pm} from internal and external conversions. Methods developed at the CERN ISR which led to the discovery of direct-single-e±e^{\pm} in 1974, later determined to be from the semi-leptonic decay of charm which had not yet been discovered, were used by PHENIX at RHIC to make precision measurements of heavy quark production in p-p and Au+Au collisions, leading to the puzzle of apparent equal suppression of light and heavy quarks in the QGP. If the Higgs mechanism gives mass to gauge bosons but not to fermions, then a proposal that all 6 quarks are nearly massless in a QGP, which would resolve the puzzle, can not be excluded. This proposal can be tested with future measurements of heavy quark correlations in A+A collisionsComment: 12 pages, 16 figures, 26th Winter Workshop on Nuclear Dynamics, Ocho Rios, Jamaica WI, January 2-9, 2010. Corrected citation of 1974 direct single lepton discover

    New Cataclysmic Variables and other Exotic Binaries in the Globular Cluster 47 Tucanae

    Full text link
    We present 22 new (+3 confirmed) cataclysmic variables (CVs) in the non core-collapsed globular cluster 47 Tucanae (47 Tuc). The total number of CVs in the cluster is now 43, the largest sample in any globular cluster so far. For the identifications we used near-ultraviolet (NUV) and optical images from the Hubble Space Telescope, in combination with X-ray results from the Chandra X-ray Observatory. This allowed us to build the deepest NUV CV luminosity function of the cluster to date. We found that the CVs in 47 Tuc are more concentrated towards the cluster center than the main sequence turnoff stars. We compared our results to the CV populations of the core-collapsed globular clusters NGC 6397 and NGC 6752. We found that 47 Tuc has fewer bright CVs per unit mass than those two other clusters. That suggests that dynamical interactions in core-collapsed clusters play a major role creating new CVs. In 47 Tuc, the CV population is probably dominated by primordial and old dynamically formed systems. We estimated that the CVs in 47 Tuc have total masses of approx. 1.4 M_sun. We also found that the X-ray luminosity function of the CVs in the three clusters is bimodal. Additionally, we discuss a possible double degenerate system and an intriguing/unclassified object. Finally, we present four systems that could be millisecond pulsar companions given their X-ray and NUV/optical colors. For one of them we present very strong evidence for being an ablated companion. The other three could be CO- or He-WDs.Comment: Published on MNRAS. 31 Pages, 23 Figures, 5 Tables. Minor changes with respect to previous arXiv versio
    corecore