61 research outputs found
MicroRNAs in pulmonary arterial remodeling
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
Irreversible Pulmonary Hypertension Associated with the use of Interferon Alpha for Chronic Hepatitis C
The interferons are a complex group of virally induced proteins produced by activated macrophages and lymphocytes, which have become the mainstay of therapy for hepatitis C infection. Sustained viral response (SVR) rates in noncirrhotic patients vary from 40–80% with interferon-based therapy. This, along with transplantation, has drastically changed the course of hepatitis C virus (HCV) infection over the last two decades. Numerous side effects associated with interferon therapy have been reported. These range from transient flu-like symptoms to serious effects such as cardiac arrhythmias, cardiomyopathy, renal and liver failure, polyneuropathy, and myelosuppression. Pulmonary side effects including pneumonitis, pulmonary fibrosis, and reversible pulmonary hypertension have been reported. Herein, we present four cases in which irreversible pulmonary hypertension was diagnosed after prolonged treatment with interferon alpha. In each case, other causes of pulmonary hypertension were systematically eliminated. Pulmonary artery hypertension, which may be irreversible, should be considered in patients being treated with interferon alpha who present with exertional dyspnea and do not have a readily identifiable inflammatory or thromboembolic cause
Polymorphism of the Fractalkine Receptor CX3CR1 and Systemic Sclerosis-associated Pulmonary Arterial Hypertension
Fractalkine (FKN) and its receptor CX3CR1 are critical mediators in the
vascular and tissue damage of several chronic diseases, including systemic
sclerosis (SSc) and pulmonary arterial hypertension (PAH). Interestingly, the V249I
and T280M genetic polymorphisms influence CX3CR1 expression and function. We
investigated whether these polymorphisms are associated with PAH secondary to
SSc. CX3CR1 genotypes were analyzed by PCR and sequencing in 76 patients with
limited SSc and 204 healthy controls. PAH was defined by colorDoppler echocardiography.
Homozygosity for 249II as well as the combined presence of 249II and 280MM were
significantly more frequent in patients with SSc compared to controls (17 vs 6%,
p = 0.0034 and 5 vs 1%, p = 0.0027, respectively). The 249I and 280M alleles were
associated with PAH (odd ratio [OR] 2.2, 95% confidence interval [CI] 1.01-4.75,
p = 0.028 and OR 7.37, 95%CI: 2.45-24.60, p = 0.0001, respectively). In conclusion,
the increased frequencies of 249I and 280M CX3CR1 alleles in a subgroup of
patients with SSc-associated PAH suggest a role for the fractalkine system in
the pathogenesis of this
condition. Further, the 249I allele might be associated with susceptibility to SSc
Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation
Severe pulmonary arterial hypertension, whether idiopathic or secondary, is characterized by structural alterations of microscopically small pulmonary arterioles. The vascular lesions in this group of pulmonary hypertensive diseases show actively proliferating endothelial cells without evidence of apoptosis. In this article, we review pathogenetic concepts of severe pulmonary arterial hypertension and explain the term "complex vascular lesion ", commonly named "plexiform lesion", with endothelial cell dysfunction, i.e., apoptosis, proliferation, interaction with smooth muscle cells and transdifferentiation
Upregulated Genes In Sporadic, Idiopathic Pulmonary Arterial Hypertension
BACKGROUND: To elucidate further the pathogenesis of sporadic, idiopathic pulmonary arterial hypertension (IPAH) and identify potential therapeutic avenues, differential gene expression in IPAH was examined by suppression subtractive hybridisation (SSH). METHODS: Peripheral lung samples were obtained immediately after removal from patients undergoing lung transplant for IPAH without familial disease, and control tissues consisted of similarly sampled pieces of donor lungs not utilised during transplantation. Pools of lung mRNA from IPAH cases containing plexiform lesions and normal donor lungs were used to generate the tester and driver cDNA libraries, respectively. A subtracted IPAH cDNA library was made by SSH. Clones isolated from this subtracted library were examined for up regulated expression in IPAH using dot blot arrays of positive colony PCR products using both pooled cDNA libraries as probes. Clones verified as being upregulated were sequenced. For two genes the increase in expression was verified by northern blotting and data analysed using Student's unpaired two-tailed t-test. RESULTS: We present preliminary findings concerning candidate genes upregulated in IPAH. Twenty-seven upregulated genes were identified out of 192 clones examined. Upregulation in individual cases of IPAH was shown by northern blot for tissue inhibitor of metalloproteinase-3 and decorin (P < 0.01) compared with the housekeeping gene glyceraldehydes-3-phosphate dehydrogenase. CONCLUSION: Four of the up regulated genes, magic roundabout, hevin, thrombomodulin and sucrose non-fermenting protein-related kinase-1 are expressed specifically by endothelial cells and one, muscleblind-1, by muscle cells, suggesting that they may be associated with plexiform lesions and hypertrophic arterial wall remodelling, respectively
Relativistic Binaries in Globular Clusters
Galactic globular clusters are old, dense star systems typically containing
10\super{4}--10\super{7} stars. As an old population of stars, globular
clusters contain many collapsed and degenerate objects. As a dense population
of stars, globular clusters are the scene of many interesting close dynamical
interactions between stars. These dynamical interactions can alter the
evolution of individual stars and can produce tight binary systems containing
one or two compact objects. In this review, we discuss theoretical models of
globular cluster evolution and binary evolution, techniques for simulating this
evolution that leads to relativistic binaries, and current and possible future
observational evidence for this population. Our discussion of globular cluster
evolution will focus on the processes that boost the production of hard binary
systems and the subsequent interaction of these binaries that can alter the
properties of both bodies and can lead to exotic objects. Direct {\it N}-body
integrations and Fokker--Planck simulations of the evolution of globular
clusters that incorporate tidal interactions and lead to predictions of
relativistic binary populations are also discussed. We discuss the current
observational evidence for cataclysmic variables, millisecond pulsars, and
low-mass X-ray binaries as well as possible future detection of relativistic
binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl
Relationship between fibroblastic foci profusion and high resolution CT morphology in fibrotic lung disease
Gammaherpesvirus-Induced Lung Pathology Is Altered in the Absence of Macrophages
The purpose of this study was to examine the lung pathogenesis of murine gammaherpesvirus (MHV-68) infection in mice that lack CC chemokine receptor CCR2, an important receptor for macrophage recruitment to sites of inflammation. BALB/c and CCR2 −/− mice were inoculated intranasally (i.n.) with MHV-68 and samples were collected during acute infection (6 dpi) and following viral clearance (12 dpi). Immunohistochemistry was used to determine which cells types responded to MHV-68 infection in the lungs. Lung pathology in infected BALB/c mice was characterized by a mixed inflammatory cell infiltrate, necrosis, and increased alveolar macrophages by 12 dpi. Immunohistochemistry showed intense positive staining for macrophages. CCR2 −/− mice showed greater inflammation in the lungs at 12 dpi than did BALB/c mice, with more necrosis and diffuse neutrophil infiltrates in the alveoli. Immunohistochemistry demonstrated much less macrophage infiltration in the CCR2 −/− mice than in the BALB/c mice. These studies show that CCR2 is involved in macrophage recruitment in response to MHV-68 infection and illustrates how impairments in macrophage function affect the normal inflammatory response to this viral infection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41345/1/408_2004_Article_2535.pd
WITHDRAWN: Abnormal Muscularization of Intra Acinar Pulmonary Arteries in 2 Cases Presenting as Sudden Infant Death (SIDS)
- …
