1,493 research outputs found
Is there any Evidence for Regional Atmospheric 14C Offsets in the Southern Hemisphere?
Center for Accelerator Mass Spectrometry (CAMS) Tasmanian huon pine (Lagarostrobos franklinii) decadal measurements for the interval AD 745–855 suggest a mean interhemispheric radiocarbon offset (20 ± 5 yr), which is considerably lower than the previously reported mean interhemispheric offset for the last 2 millennia (44 ± 17 yr). However, comparable University of Waikato (Wk) New Zealand kauri (Agathis australis) measurements show significantly higher values (56 ± 6 yr), suggesting the possibility of a temporary geographic (intrahemispheric) offset between Tasmania, Australia, and Northland, New Zealand, during at least 1 common time interval. Here, we report 9 new Wk Tasmanian huon pine measurements from the decades showing the largest huon/kauri difference. We show statistically indistinguishable Wk huon and Wk kauri 14C ages, thus dispelling the suggestion of a 14C geographic offset between Tasmania and Northland
Evidence for suppressed mid-Holocene northeastern Australian monsoon variability from coral luminescence
Summer monsoon rainfall in northeastern (NE) Australia exhibits substantial interannual variability resulting in highly variable river flows. The occurrence and magnitude of these seasonal river flows are reliably recorded in modern inshore corals as luminescent lines. Here we present reconstructed annual river flows for two ~120 year mid-Holocene windows based on luminescence measurements from five cores obtained from three separate coral colonies. We were able to cross-date the luminescence signatures in four cores from two of the colonies, providing confidence in the derived reconstruction. Present-day NE Australian rainfall and river flow are sensitive to El Niño–Southern Oscillation (ENSO) variability, with La Niña (El Niño) events typically associated with wetter (drier) monsoon seasons. Thus, our replicated and annually resolved coral records provide valuable insights into the northern Australian summer monsoon and ENSO variability at a key period (6 ka) when greenhouse gas levels and ice sheet cover were comparable to the preindustrial period but orbital forcing was different. Average modern and mid-Holocene growth characteristics were very similar, suggesting that sea surface temperatures off NE Australia at 6 kyr were also close to present values. The reconstructed river flow record suggests, however, that the mid-Holocene Australian summer monsoon was weaker, less variable from year to year (possibly indicative of reduced ENSO variability), and characterized by more within-season flood pulses than present. In contrast to today, the delivery of moisture appears to have been dominated by eastward propagating convective coupled waves associated with the Madden-Julian Oscillation
Recommended from our members
Internal fluid flow management analysis for Clinch River Breeder Reactor Plant sodium pumps
The Clinch River Breeder Reactor Plant (CRBRP) sodium pumps are currently being designed and the prototype unit is being fabricated. In the design of these large-scale pumps for elevated temperature Liquid Metal Fast Breeder Reactor (LMFBR) service, one major design consideration is the response of the critical parts to severe thermal transients. A detailed internal fluid flow distribution analysis has been performed using a computer code HAFMAT, which solves a network of fluid flow paths. The results of the analytical approach are then compared to the test data obtained on a half-scale pump model which was tested in water. The details are presented of pump internal hydraulic analysis, and test and evaluation of the half-scale model test results
A Brief History, Status, and Perspective of Modified Oligonucleotides for Chemotherapeutic Applications
The advent of rapid and efficient methods of oligonucleotide synthesis has allowed the design of modified oligonucleotides that are complementary to specific nucleotide sequences in mRNA targets. Such modified oligonucleotides can be used to disrupt the flow of genetic information from transcribed mRNAs to proteins. This antisense strategy has been used to develop therapeutic oligonucleotides against cancer and various infectious diseases in humans. This overview reports recent advances in the application of oligonucleotides as drug candidates, describes the relationship between oligonucleotide modifications and their therapeutic profiles, and provides general guidelines for enhancing oligonucleotide drug properties.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143788/1/cpnc0401.pd
Alkali extraction of archaeological and geological charcoal: evidence for diagenetic degradation and formation of humic acids
Charcoal forms a crucial source of archaeological and palaeoenvironmental data, providing a record of cultural activities, past climatic conditions and a means of chronological control via radiocarbon (<sup>14</sup>C) dating. Key to this is the perceived resistance of charcoal to post-depositional alteration, however recent research has highlighted the possibility for alteration and degradation of charcoal in the environment. An important aspect of such diagenesis is the potential for addition of exogenous 'humic acids' (HAs), to affect the accuracy of archaeological and palaeoenvironmental reconstructions based upon chemical analyses of HA-containing charcoal. However the release of significant quantities of HA from apparently pristine charcoals raises the question whether some HA could be derived via diagenetic alteration of charcoal itself. Here we address this question through comparison of freshly produced charcoal with samples from archaeological and geological sites exposed to environmental conditions for millennia using elemental (C/H/O) and isotopic (δ<sup>13</sup>C) measurements, Fourier Transform Infrared Spectroscopy (FTIR) and proton Liquid-State Nuclear Magnetic Resonance (<sup>1</sup>H NMR). The results of analyses show that the presence of highly carboxylated and aromatic alkali-extractable HA in charcoal from depositional environments can often be attributable to the effects of post-depositional processes, and that these substances can represent the products of post-depositional diagenetic alteration in charcoal
Carbon Capture and Storage
Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced
by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2 from the point of capture to the storage location, and isolation from the atmosphere by storage in deep underground rock formations. Considering full life-cycle emissions, CCS technology can reduce 65–85% of CO2 emissions from fossil fuel combustion from stationary sources, although greater reductions may be possible if low emission technologies are applied to activities beyond the plant boundary, such as fuel transportation.
CCS is applicable to many stationary CO2 sources, including the power generation, refining, building
materials, and the industrial sector. The recent emphasis on the use of CCS primarily to reduce emissions from coal-fired electricity production is too narrow a vision for CCS.
Interest in CCS is growing rapidly around the world. Over the past decade there has been a remarkable increase in interest and investment in CCS. Whereas a decade ago, there was only one operating CCS project and little industry or government investment in R&D, and no financial incentives to promote CCS. In 2010, numerous projects of various sizes are active, including at least five large-scale full CCS projects. In 2015, it is expected that 15 large-scale, full-chain CCS projects will be running. Governments and industry have committed over USD 26 billion for R&D, scale-up and deployment.
The technology for CCS is available today, but significant improvements are needed to support widespread
deployment. Technology advances are needed primarily to reduce the cost of capture and increase confidence in storage security. Demonstration projects are needed to address issues of process integration between CO2 capture and product generation, for instance in power, cement and steel production, obtain cost and performance data, and for industry where capture is more mature to gain needed operational experience. Large-scale storage projects in saline aquifers are needed to address issues of site characterization and site selection, capacity assessment, risk management and monitoring.
Successful experiences from five ongoing projects demonstrate that, at least on this limited scale, CCS can
be safe and effective for reducing emissions. Five commercial-scale CCS projects are operational today with over 35 million tonnes of CO2 captured and stored since 1996. Observations from commercial storage projects, commercial enhanced oil recovery projects, engineered and natural analogues as well as theoretical considerations, models, and laboratory experiments suggest that appropriately selected and managed geological storage reservoirs are very likely to retain nearly all the injected CO2 for very long times, more than long enough to provide benefits for the intended purpose of CCS.
Significant scale-up compared to existing CCS activities will be needed to achieve large reductions in CO2
emissions. A 5- to 10-fold scale-up in the size of individual projects is needed to capture and store emissions from a typical coal-fired power plant (500 to 1000 MW). A thousand fold scale-up in size of today’s CCS enterprise would be needed to reduce emissions by billions of tonnes per year (Gt/yr).
The technical potential of CCS on a global level is promising, but on a regional level is differentiated. The
primary technical limitation for CCS is storage capacity. Much more work needs to be done to realistically assess storage capacity on a worldwide, regional basis and sub-regional basis.
Worldwide storage capacity estimation is improving but more experience is needed. Estimates for oil and gas reservoirs are about 1000 GtCO2, saline aquifers are estimated to have a capacity ranging from about 4000 to 23,000 GtCO2. However, there is still considerable debate about how much storage capacity actually exists, particularly in saline aquifers. Research, geological assessments and, most importantly, commercial-scale demonstration projects will be needed to improve confidence in capacity estimates.
Costs and energy requirements for capture are high. Estimated costs for CCS vary widely, depending on the application (e.g. gas clean-up vs. electricity generation), the type of fuel, capture technology, and assumptions about the baseline technology. For example, with today’s technology, CCS would increase cost of generating electricity by 50–100%. In this case, capital costs and parasitic energy requirements of 15–30% are the major cost drivers. Research is underway to lower costs and energy requirements. Early demonstration projects are likely to cost more.
The combination of high cost and low or absent incentives for large-scale deployment are a major factor
limiting the widespread use of CCS. Due to high costs, CCS will not take place without strong incentives to limit CO2 emissions. Certainty about the policy and regulatory regimes will be crucial for obtaining access to capital to build these multi-billion dollar projects.
Environmental risks of CCS appear manageable, but regulations are needed. Regulation needs to ensure due diligence over the lifecycle of the project, but should, most importantly, also govern site selection, operating guidelines, monitoring and closure of a storage facility.
Experience so far has shown that local resistance to CO2 storage projects may appear and can lead to
cancellation of planned CCS projects. Inhabitants of the areas around geological storage sites often have concerns about the safety and effectiveness of CCS. More CCS projects are needed to establish a convincing safety record. Early engagement of communities in project design and site selection as well as credible communication can help ease resistance. Environmental organisations sometimes see CCS as a distraction from a sustainable energy future.
Social, economic, policy and political factors may limit deployment of CCS if not adequately addressed.
Critical issues include ownership of underground pore space (primarily an issue in the US); long-term liability and stewardship; GHG accounting approaches and ve rification; and regulatory oversight regimes. Governments and the private sector are making significant progress on all of these issues. Government support to lower barriers for early deployments is needed to encourage private sector adoption. Developing countries will need support for technology access, lowering the cost of CCS, developing workforce capacity and training regulators for permitting, monitoring and oversight.
CCS combined with biomass can lead to negative emissions . Such technologies are likely to be needed to achieve atmospheric stabilization of CO2 and may provide an additional incentive for CCS adoption
A skeleton approximate solution of the Einstein field equations for multiple black-hole systems
An approximate analytical and non-linear solution of the Einstein field
equations is derived for a system of multiple non-rotating black holes. The
associated space-time has the same asymptotic structure as the Brill-Lindquist
initial data solution for multiple black holes. The system admits an
Arnowitt-Deser-Misner (ADM) Hamiltonian that can particularly evolve the
Brill-Lindquist solution over finite time intervals. The gravitational field of
this model may properly be referred to as a skeleton approximate solution of
the Einstein field equations. The approximation is based on a conformally flat
truncation, which excludes gravitational radiation, as well as a removal of
some additional gravitational field energy. After these two simplifications,
only source terms proportional to Dirac delta distributions remain in the
constraint equations. The skeleton Hamiltonian is exact in the test-body limit,
it leads to the Einsteinian dynamics up to the first post-Newtonian
approximation, and in the time-symmetric limit it gives the energy of the
Brill-Lindquist solution exactly. The skeleton model for binary systems may be
regarded as a kind of analytical counterpart to the numerical treatment of
orbiting Misner-Lindquist binary black holes proposed by Gourgoulhon,
Grandclement, and Bonazzola, even if they actually treat the corotating case.
Along circular orbits, the two-black-hole skeleton solution is quasi-stationary
and it fulfills the important property of equality of Komar and ADM masses.
Explicit calculations for the determination of the last stable circular orbit
of the binary system are performed up to the tenth post-Newtonian order within
the skeleton model.Comment: 15 pages, 1 figure, submitted to Phys. Rev. D, 3 references added,
minor correction
Slow relaxation due to optimization and restructuring: Solution on a hierarchical lattice
Motivated by the large strain shear of loose granular materials we introduced
a model which consists of consecutive optimization and restructuring steps
leading to a self organization of a density field. The extensive connections to
other models of statistical phyics are discussed. We investigate our model on a
hierarchical lattice which allows an exact asymptotic renormalization
treatment. A surprisingly close analogy is observed between the simulation
results on the regular and the hierarchical lattices. The dynamics is
characterized by the breakdown of ergodicity, by unusual system size effects in
the development of the average density as well as by the age distribution, the
latter showing multifractal properties.Comment: 11 pages, 7 figures revtex, submitted to PRE see also:
cond-mat/020920
Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity
A formalism for studying spontaneous decay of an excited two-level atom in
the presence of dispersing and absorbing dielectric bodies is developed. An
integral equation, which is suitable for numerical solution, is derived for the
atomic upper-state-probability amplitude. The emission pattern and the power
spectrum of the emitted light are expressed in terms of the Green tensor of the
dielectric-matter formation including absorption and dispersion. The theory is
applied to the spontaneous decay of an excited atom at the center of a
three-layered spherical cavity, with the cavity wall being modeled by a
band-gap dielectric of Lorentz type. Both weak coupling and strong coupling are
studied, the latter with special emphasis on the cases where the atomic
transition is (i) in the normal-dispersion zone near the medium resonance and
(ii) in the anomalous-dispersion zone associated with the band gap. In a
single-resonance approximation, conditions of the appearance of Rabi
oscillations and closed solutions to the evolution of the atomic state
population are derived, which are in good agreement with the exact numerical
results.Comment: 12 pages, 6 figures, typos fixed, 1 figure adde
- …