24,159 research outputs found
Different populations of RNA polymerase II in living mammalian cells
RNA polymerase II is responsible for transcription of most eukaryotic genes, but, despite exhaustive analysis, little is known about how it transcribes natural templates in vivo. We studied polymerase dynamics in living Chinese hamster ovary cells using an established line that expresses the largest (catalytic) subunit of the polymerase (RPB1) tagged with the green fluorescent protein (GFP). Genetic complementation has shown this tagged polymerase to be fully functional. Fluorescence loss in photobleaching (FLIP) reveals the existence of at least three kinetic populations of tagged polymerase: a large rapidly-exchanging population, a small fraction resistant to 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) but sensitive to a different inhibitor of transcription (i.e. heat shock), and a third fraction sensitive to both inhibitors. Quantitative immunoblotting shows the largest fraction to be the inactive hypophosphorylated form of the polymerase (i.e. IIA). Results are consistent with the second (DRB-insensitive but heat-shock-sensitive) fraction being bound but not engaged, while the third (sensitive to both DRB and heat shock) is the elongating hyperphosphorylated form (i.e. IIO)
Oncogenic K-Ras suppresses IP<sub>3</sub>-dependent Ca<sup>2+</sup> release through remodeling of IP<sub>3</sub>Rs isoform composition and ER luminal Ca<sup>2+</sup> levels in colorectal cancer cell lines
The GTPase Ras is a molecular switch engaged downstream of G-protein coupled receptors and receptor tyrosine inases that controls multiple cell fate-determining signalling athways. Ras signalling is frequently deregulated in cancer underlying associated changes in cell phenotype. Although Ca2+ signalling pathways control some overlapping functions with Ras, and altered Ca2+ signalling pathways are emerging as important players in oncogenic transformation, how Ca2+ signalling is remodelled during transformation and whether it has a causal role remains unclear. We have investigated Ca2+ signalling in two human colorectal cancer cell lines and their isogenic derivatives in which the mutated K-Ras allele (G13D) has been deleted by homologous recombination. We show that agonist-induced Ca2+ release from intracellular stores is enhanced by loss of K-RasG13D through an increase in the ER store content and a modification of IP3R subtype abundance. Consistently, uptake of Ca2+ into mitochondria and sensitivity to apoptosis was enhanced as a result of KRasG13D loss. These results suggest that suppression of Ca2+ signalling is a common response to naturally occurring levels of K-RasG13D that contributes to a survival
advantage during oncogenic transformation
The Effect of Vitamin Deficiency on Blood Pressure in Rats
After devising a very delicate, modified recording mercury manometer, it was found possible to obtain direct blood pressure curves from the abdominal aorta of anaesthetised rats, previously fed upon specific normal and vitamin deficient diets and thus make comparisons. About 75 animals were used, one-half of this number being normals to check about equally against A and B deficient animals. The records from 22 normals, on growing rations, showed an average of 84 mm. Hg, with the exception of one extremely high and one extremely low figure. The majority were close to the general average. This figure is strikingly close to the figure cited by Uhlmann, where he found the normal pressure in rabbits to be about 90 mm. Hg
Innermost stable circular orbits around relativistic rotating stars
We investigate the innermost stable circular orbit (ISCO) of a test particle
moving on the equatorial plane around rotating relativistic stars such as
neutron stars. First, we derive approximate analytic formulas for the angular
velocity and circumferential radius at the ISCO making use of an approximate
relativistic solution which is characterized by arbitrary mass, spin, mass
quadrupole, current octapole and mass -pole moments. Then, we show that
the analytic formulas are accurate enough by comparing them with numerical
results, which are obtained by analyzing the vacuum exterior around numerically
computed geometries for rotating stars of polytropic equation of state. We
demonstrate that contribution of mass quadrupole moment for determining the
angular velocity and, in particular, the circumferential radius at the ISCO
around a rapidly rotating star is as important as that of spin.Comment: 12 pages, 2 figures, accepted for publication in Phys. Rev.
Development of Uniform CdTe Pixel Detectors Based on Caltech ASIC
We have developed a large CdTe pixel detector with dimensions of 23.7 x 13.0
mm and a pixel size of 448 x 448 um^2. The detector is based on recent
technologies of an uniform CdTe single crystal, a two-dimensional ASIC, and
stud bump-bonding to connect pixel electrodes on the CdTe surface to the ASIC.
Good spectra are obtained from 1051 pixels out of total 1056 pixels. When we
operate the detector at -50 C, the energy resolution is 0.67 keV and 0.99 keV
at 14 keV and 60 keV, respectively. Week-long stability of the detector is
confirmed at operating temperatures of both -50 C and -20 C. The detector also
shows high uniformity: the peak positions for all pixels agree to within 0.82%,
and the average of the energy resolution is 1.04 keV at a temperature of -50 C.
When we normalized the peak area by the total counts detected by each pixel, a
variation of 2.1 % is obtained.Comment: 11pages, 17figures, accepted for publication in Proc. SPIE 200
Must naive realists be relationalists?
Relationalism maintains that perceptual experience involves, as part of its nature, a distinctive kind of conscious perceptual relation between a subject of experience and an object of experience. Together with the claim that perceptual experience is presentational, relationalism is widely believed to be a core aspect of the naive realist outlook on perception. This is a mistake. I argue that naive realism about perception can be upheld without a commitment to relationalism
Investigations of fast neutron production by 190 GeV/c muon interactions on different targets
The production of fast neutrons (1 MeV - 1 GeV) in high energy muon-nucleus
interactions is poorly understood, yet it is fundamental to the understanding
of the background in many underground experiments. The aim of the present
experiment (CERN NA55) was to measure spallation neutrons produced by 190 GeV/c
muons scattering on carbon, copper and lead targets. We have investigated the
energy spectrum and angular distribution of spallation neutrons, and we report
the result of our measurement of the neutron production differential cross
section.Comment: 19 pages, 11 figures ep
Slippage and Migration in Taylor-Couette Flow of a Model for Dilute Wormlike Micellar Solutions
Submitted to J. Non-Newt Fluid Mechanics, June 2005In this paper we explore a model, most appropriate for dilute or semi-dilute worm-like micellar solutions, in an axisymmetric circular Taylor-Couette geometry. This study is a natural continuation of earlier work on rectilinear shear flows. The model, based on a bead-spring microstructure with nonaffine motion, reproduces the pronounced plateau in the stress strain-rate flow curve as observed in laboratory measurements of steady shearing flows. We also carry out a linear stability analysis of the computed steady state solutions. The results show shear-banding in the form of sharp changes in velocity gradients, spatial variations in number density, and in
alignment or stretching of the micelles. The velocity profiles obtained in numerical
solutions show strong qualitative agreement with those of laboratory experiments.NSF Collaborative Research Projec
- …