1,027 research outputs found
Investigation of the influence of CO2 cryogenic coolant application on tool wear
The use of cryogenic coolants has emerged as an environmentally conscious alternative to emulsion coolant options. Cryogenic media can be delivered with a variety of methods to the cutting edge and they can be used in combination with other traditional coolant options such as Minimum Quantity Lubrication (MQL) and compressed air cooling in order to aid dissipation of heat generated in the cutting zone and maximize the lubrication of the cutting edge and thus prolong tool life. This study focuses on the investigation of tool life when milling aerospace grade titanium (Ti-6Al-4 V) under different coolant delivery options. Tool wear progression was recorded for the following coolant options: cryogenic CO 2 , emulsion flood cooling, dry machining, cryogenic CO 2 combined with air or MQL as well as MQL alone
Relativistic Models for Binary Neutron Stars with Arbitrary Spins
We introduce a new numerical scheme for solving the initial value problem for
quasiequilibrium binary neutron stars allowing for arbitrary spins. The coupled
Einstein field equations and equations of relativistic hydrodynamics are solved
in the Wilson-Mathews conformal thin sandwich formalism. We construct sequences
of circular-orbit binaries of varying separation, keeping the rest mass and
circulation constant along each sequence. Solutions are presented for
configurations obeying an n=1 polytropic equation of state and spinning
parallel and antiparallel to the orbital angular momentum. We treat stars with
moderate compaction ((m/R) = 0.14) and high compaction ((m/R) = 0.19). For all
but the highest circulation sequences, the spins of the neutron stars increase
as the binary separation decreases. Our zero-circulation cases approximate
irrotational sequences, for which the spin angular frequencies of the stars
increases by 13% (11%) of the orbital frequency for (m/R) = 0.14 ((m/R) = 0.19)
by the time the innermost circular orbit is reached. In addition to leaving an
imprint on the inspiral gravitational waveform, this spin effect is measurable
in the electromagnetic signal if one of the stars is a pulsar visible from
Earth.Comment: 21 pages, 14 figures. A few explanatory sentences added and some
typos corrected. Accepted for publication in Phys. Rev.
Circular orbits of corotating binary black holes: comparison between analytical and numerical results
We compare recent numerical results, obtained within a ``helical Killing
vector'' (HKV) approach, on circular orbits of corotating binary black holes to
the analytical predictions made by the effective one body (EOB) method (which
has been recently extended to the case of spinning bodies). On the scale of the
differences between the results obtained by different numerical methods, we
find good agreement between numerical data and analytical predictions for
several invariant functions describing the dynamical properties of circular
orbits. This agreement is robust against the post-Newtonian accuracy used for
the analytical estimates, as well as under choices of resummation method for
the EOB ``effective potential'', and gets better as one uses a higher
post-Newtonian accuracy. These findings open the way to a significant
``merging'' of analytical and numerical methods, i.e. to matching an EOB-based
analytical description of the (early and late) inspiral, up to the beginning of
the plunge, to a numerical description of the plunge and merger. We illustrate
also the ``flexibility'' of the EOB approach, i.e. the possibility of
determining some ``best fit'' values for the analytical parameters by
comparison with numerical data.Comment: Minor revisions, accepted for publication in Phys. Rev. D, 19 pages,
6 figure
Properties of Pt Schottky Type Contacts On High-Resistivity CdZnTe Detectors
In this paper we present studies of the I-V characteristics of CdZnTe
detectors with Pt contacts fabricated from high-resistivity single crystals
grown by the high-pressure Brigman process. We have analyzed the experimental
I-V curves using a model that approximates the CZT detector as a system
consisting of a reversed Schottky contact in series with the bulk resistance.
Least square fits to the experimental data yield 0.78-0.79 eV for the Pt-CZT
Schottky barrier height, and <20 V for the voltage required to deplete a 2 mm
thick CZT detector. We demonstrate that at high bias the thermionic current
over the Schottky barrier, the height of which is reduced due to an interfacial
layer between the contact and CZT material, controls the leakage current of the
detectors. In many cases the dark current is not determined by the resistivity
of the bulk material, but rather the properties of the contacts; namely by the
interfacial layer between the contact and CZT material.Comment: 12 pages, 11 figure
Disease-specific, neurosphere-derived cells as models for brain disorders
There is a pressing need for patient-derived cell models of brain diseases that are relevant and robust enough to produce the large quantities of cells required for molecular and functional analyses. We describe here a new cell model based on patient-derived cells from the human olfactory mucosa, the organ of smell, which regenerates throughout life from neural stem cells. Olfactory mucosa biopsies were obtained from healthy controls and patients with either schizophrenia, a neurodevelopmental psychiatric disorder, or Parkinson's disease, a neurodegenerative disease. Biopsies were dissociated and grown as neurospheres in defined medium. Neurosphere-derived cell lines were grown in serum-containing medium as adherent monolayers and stored frozen. By comparing 42 patient and control cell lines we demonstrated significant disease-specific alterations in gene expression, protein expression and cell function, including dysregulated neurodevelopmental pathways in schizophrenia and dysregulated mitochondrial function, oxidative stress and xenobiotic metabolism in Parkinson's disease. The study has identified new candidate genes and cell pathways for future investigation. Fibroblasts from schizophrenia patients did not show these differences. Olfactory neurosphere-derived cells have many advantages over embryonic stem cells and induced pluripotent stem cells as models for brain diseases. They do not require genetic reprogramming and they can be obtained from adults with complex genetic diseases. They will be useful for understanding disease aetiology, for diagnostics and for drug discovery
Gravitational waves from inspiralling compact binaries: Parameter estimation using second-post-Newtonian waveforms
The parameters of inspiralling compact binaries can be estimated using
matched filtering of gravitational-waveform templates against the output of
laser-interferometric gravitational-wave detectors. Using a recently calculated
formula, accurate to second post-Newtonian (2PN) order [order , where
is the orbital velocity], for the frequency sweep () induced by
gravitational radiation damping, we study the statistical errors in the
determination of such source parameters as the ``chirp mass'' , reduced
mass , and spin parameters and (related to spin-orbit and
spin-spin effects, respectively). We find that previous results using template
phasing accurate to 1.5PN order actually underestimated the errors in ,
, and . For two inspiralling neutron stars, the measurement errors
increase by less than 16 percent.Comment: 14 pages, ReVTe
Electronic Structures of Quantum Dots and the Ultimate Resolution of Integers
The orbital angular momentum L as an integer can be ultimately factorized as
a product of prime numbers. We show here a close relation between the
resolution of L and the classification of quantum states of an N-electron
2-dimensional system. In this scheme, the states are in essence classified into
different types according to the m(k)-accessibility, namely the ability to get
access to symmetric geometric configurations. The m(k)-accessibility is an
universal concept underlying all kinds of 2-dimensional systems with a center.
Numerical calculations have been performed to reveal the electronic structures
of the states of the dots with 9 and 19 electrons,respectively. This paper
supports the Laughlin wave finction and the composite fermion model from the
aspect of symmetry.Comment: Two figure
Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons
We study associative memory neural networks of the Hodgkin-Huxley type of
spiking neurons in which multiple periodic spatio-temporal patterns of spike
timing are memorized as limit-cycle-type attractors. In encoding the
spatio-temporal patterns, we assume the spike-timing-dependent synaptic
plasticity with the asymmetric time window. Analysis for periodic solution of
retrieval state reveals that if the area of the negative part of the time
window is equivalent to the positive part, then crosstalk among encoded
patterns vanishes. Phase transition due to the loss of the stability of
periodic solution is observed when we assume fast alpha-function for direct
interaction among neurons. In order to evaluate the critical point of this
phase transition, we employ Floquet theory in which the stability problem of
the infinite number of spiking neurons interacting with alpha-function is
reduced into the eigenvalue problem with the finite size of matrix. Numerical
integration of the single-body dynamics yields the explicit value of the
matrix, which enables us to determine the critical point of the phase
transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.
Time-symmetric initial data for binary black holes in numerical relativity
We look for physically realistic initial data in numerical relativity which
are in agreement with post-Newtonian approximations. We propose a particular
solution of the time-symmetric constraint equation, appropriate to two
momentarily static black holes, in the form of a conformal decomposition of the
spatial metric. This solution is isometric to the post-Newtonian metric up to
the 2PN order. It represents a non-linear deformation of the solution of Brill
and Lindquist, i.e. an asymptotically flat region is connected to two
asymptotically flat (in a certain weak sense) sheets, that are the images of
the two singularities through appropriate inversion transformations. The total
ADM mass M as well as the individual masses m_1 and m_2 (when they exist) are
computed by surface integrals performed at infinity. Using second order
perturbation theory on the Brill-Lindquist background, we prove that the
binary's interacting mass-energy M-m_1-m_2 is well-defined at the 2PN order and
in agreement with the known post-Newtonian result.Comment: 27 pages, to appear in Phys. Rev.
Gravitational radiation from a particle in circular orbit around a black hole. VI. Accuracy of the post-Newtonian expansion
A particle of mass moves on a circular orbit around a nonrotating black
hole of mass . Under the assumption the gravitational waves
emitted by such a binary system can be calculated exactly numerically using
black-hole perturbation theory. If, further, the particle is slowly moving,
then the waves can be calculated approximately analytically, and expressed in
the form of a post-Newtonian expansion. We determine the accuracy of this
expansion in a quantitative way by calculating the reduction in signal-to-noise
ratio incurred when matched filtering the exact signal with a nonoptimal,
post-Newtonian filter.Comment: 5 pages, ReVTeX, 1 figure. A typographical error was discovered in
the computer code used to generate the results presented in the paper. The
corrected results are presented in an Erratum, which also incorporates new
results, obtained using the recently improved post-Newtonian calculations of
Tanaka, Tagoshi, and Sasak
- …
