273 research outputs found

    Expanding Intersectionality: Fictive Kinship Networks as Supports for the Educational Aspirations of Black Women

    Get PDF
    In this article, we use the concepts o f fictive kinship networks (Cook, 2011; Fordham, 1996; Stack, 1974) and intersectionality (Crenshaw, 1991) to explore the deeply embedded attitudes found in certain religious doctrine about the value o f education for Black females and how these beliefs shape the educational aspirations o f Black females. Especially for Black women from more conservative, religious backgrounds, we identify fictive kinship networks as important to creating the vital emotional, spiritual and intellectual spaces necessary to imagine and explore educational possibilities. As an important protective factor, a fundamental function of fictive kin relationships is the nurturing and embracing o f black women s intellect

    Embracing Productive Disruptions

    Get PDF

    Embracing Productive Disruptions

    Get PDF

    Shape dependence of two-cylinder Renyi entropies for free bosons on a lattice

    Full text link
    Universal scaling terms occurring in Renyi entanglement entropies have the potential to bring new understanding to quantum critical points in free and interacting systems. Quantitative comparisons between analytical continuum theories and numerical calculations on lattice models play a crucial role in advancing such studies. In this paper, we exactly calculate the universal two-cylinder shape dependence of entanglement entropies for free bosons on finite-size square lattices, and compare to approximate functions derived in the continuum using several different ansatzes. Although none of these ansatzes are exact in the thermodynamic limit, we find that numerical fits are in good agreement with continuum functions derived using the AdS/CFT correspondence, an extensive mutual information model, and a quantum Lifshitz model. We use fits of our lattice data to these functions to calculate universal scalars defined in the thin-cylinder limit, and compare to values previously obtained for the free boson field theory in the continuum.Comment: 7 pages, 5 figures, 1 tabl

    Genomic and gene regulatory signatures of cryptozoic adaptation: Loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum

    Get PDF
    Abstract Background Recent genome sequence analysis in the red flour beetle Tribolium castaneum indicated that this highly crepuscular animal encodes only two single opsin paralogs: a UV-opsin and a long wavelength (LW)-opsin; however, these animals do not encode a blue (B)-opsin as most other insects. Here, we studied the spatial regulation of the Tribolium single LW- and UV-opsin gene paralogs in comparison to that of the five opsin paralogs in the retina of Drosophila melanogaster. Results In situ hybridization analysis reveals that the Tribolium retina, in contrast with other insect retinas, constitutes a homogenous field of ommatidia that have seven LW-opsin expressing photoreceptors and one UV-/LW-opsin co-expressing photoreceptor per eye unit. This pattern is consistent with the loss of photoreceptors sensitive to blue wavelengths. It also identifies Tribolium as the first example of a species in insects that co-expresses two different opsins across the entire retina in violation of the widely observed one receptor rule of sensory cells. Conclusion Broader studies of opsin evolution in darkling beetles and other coleopteran groups have the potential to pinpoint the permissive and adaptive forces that played a role in the evolution of vision in Tribolium castaneum

    Prospero and Pax2 combinatorially control neural cell fate decisions by modulating Ras- and Notch-dependent signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The concept of an equivalence group, a cluster of cells with equal potential to adopt the same specific fate, has served as a useful paradigm to understand neural cell type specification. In the <it>Drosophila </it>eye, a set of five cells, called the 'R7 equivalence group', generates a single photoreceptor neuron and four lens-secreting epithelial cells. This choice between neuronal versus non-neuronal cell fates rests on differential requirements for, and cross-talk between, Notch/Delta- and Ras/mitogen-activated protein kinase (MAPK)-dependent signaling pathways. However, many questions remain unanswered related to how downstream events of these two signaling pathways mediate distinct cell fate decisions.</p> <p>Results</p> <p>Here, we demonstrate that two direct downstream targets of Ras and Notch signaling, the transcription factors Prospero and dPax2, are essential regulators of neuronal versus non-neuronal cell fate decisions in the R7 equivalence group. Prospero controls high activated MAPK levels required for neuronal fate, whereas dPax2 represses Delta expression to prevent neuronal fate. Importantly, activity from both factors is required for proper cell fate decisions to occur.</p> <p>Conclusions</p> <p>These data demonstrate that Ras and Notch signaling are integrated during cell fate decisions within the R7 equivalence group through the combinatorial and opposing activities of Pros and dPax2. Our study provides one of the first examples of how the differential expression and synergistic roles of two independent transcription factors determine cell fate within an equivalence group. Since the integration of Ras and Notch signaling is associated with many developmental and cancer models, these findings should provide new insights into how cell specificity is achieved by ubiquitously used signaling pathways in diverse biological contexts.</p

    Probing the conserved roles of cut in the development and function of optically different insect compound eyes

    Get PDF
    Astonishing functional diversity exists among arthropod eyes, yet eye development relies on deeply conserved genes. This phenomenon is best understood for early events, whereas fewer investigations have focused on the influence of later transcriptional regulators on diverse eye organizations and the contribution of critical support cells, such as Semper cells (SCs). As SCs in Drosophila melanogaster secrete the lens and function as glia, they are critical components of ommatidia. Here, we perform RNAi-based knockdowns of the transcription factor cut (CUX in vertebrates), a marker of SCs, the function of which has remained untested in these cell types. To probe for the conserved roles of cut, we investigate two optically different compound eyes: the apposition optics of D. melanogaster and the superposition optics of the diving beetle Thermonectus marmoratus. In both cases, we find that multiple aspects of ocular formation are disrupted, including lens facet organization and optics as well as photoreceptor morphogenesis. Together, our findings support the possibility of a generalized role for SCs in arthropod ommatidial form and function and introduces Cut as a central player in mediating this role
    corecore