30,009 research outputs found
Substructure Discovery Using Minimum Description Length and Background Knowledge
The ability to identify interesting and repetitive substructures is an
essential component to discovering knowledge in structural data. We describe a
new version of our SUBDUE substructure discovery system based on the minimum
description length principle. The SUBDUE system discovers substructures that
compress the original data and represent structural concepts in the data. By
replacing previously-discovered substructures in the data, multiple passes of
SUBDUE produce a hierarchical description of the structural regularities in the
data. SUBDUE uses a computationally-bounded inexact graph match that identifies
similar, but not identical, instances of a substructure and finds an
approximate measure of closeness of two substructures when under computational
constraints. In addition to the minimum description length principle, other
background knowledge can be used by SUBDUE to guide the search towards more
appropriate substructures. Experiments in a variety of domains demonstrate
SUBDUE's ability to find substructures capable of compressing the original data
and to discover structural concepts important to the domain. Description of
Online Appendix: This is a compressed tar file containing the SUBDUE discovery
system, written in C. The program accepts as input databases represented in
graph form, and will output discovered substructures with their corresponding
value.Comment: See http://www.jair.org/ for an online appendix and other files
accompanying this articl
Beetle fauna of the island of Tobago, Trinidad and Tobago, West Indies
Tobago is a biologically rich but poorly investigated island. In this paper we report the occurrence of 672 species of beetles representing 69 families. Of these, only 95 had been previously reported from the island
Measuring eccentricity in binary black-hole initial data
Initial data for evolving black-hole binaries can be constructed via many
techniques, and can represent a wide range of physical scenarios. However,
because of the way that different schemes parameterize the physical aspects of
a configuration, it is not alway clear what a given set of initial data
actually represents. This is especially important for quasiequilibrium data
constructed using the conformal thin-sandwich approach. Most initial-data
studies have focused on identifying data sets that represent binaries in
quasi-circular orbits. In this paper, we consider initial-data sets
representing equal-mass black holes binaries in eccentric orbits. We will show
that effective-potential techniques can be used to calibrate initial data for
black-hole binaries in eccentric orbits. We will also examine several different
approaches, including post-Newtonian diagnostics, for measuring the
eccentricity of an orbit. Finally, we propose the use of the ``Komar-mass
difference'' as a useful, invariant means of parameterizing the eccentricity of
relativistic orbits.Comment: 12 pages, 11 figures, submitted to Physical Review D, revtex
Gravitational waves from nonspinning black hole-neutron star binaries: dependence on equations of state
We report results of a numerical-relativity simulation for the merger of a
black hole-neutron star binary with a variety of equations of state (EOSs)
modeled by piecewise polytropes. We focus in particular on the dependence of
the gravitational waveform at the merger stage on the EOSs. The initial
conditions are computed in the moving-puncture framework, assuming that the
black hole is nonspinning and the neutron star has an irrotational velocity
field. For a small mass ratio of the binaries (e.g., MBH/MNS = 2 where MBH and
MNS are the masses of the black hole and neutron star, respectively), the
neutron star is tidally disrupted before it is swallowed by the black hole
irrespective of the EOS. Especially for less-compact neutron stars, the tidal
disruption occurs at a more distant orbit. The tidal disruption is reflected in
a cutoff frequency of the gravitational-wave spectrum, above which the spectrum
amplitude exponentially decreases. A clear relation is found between the cutoff
frequency of the gravitational-wave spectrum and the compactness of the neutron
star. This relation also depends weakly on the stiffness of the EOS in the core
region of the neutron star, suggesting that not only the compactness but also
the EOS at high density is reflected in gravitational waveforms. The mass of
the disk formed after the merger shows a similar correlation with the EOS,
whereas the spin of the remnant black hole depends primarily on the mass ratio
of the binary, and only weakly on the EOS. Properties of the remnant disks are
also analyzed.Comment: 27pages, 21 figures; erratum is added on Aug 5. 201
Cognitive consequences of clumsy automation on high workload, high consequence human performance
The growth of computational power has fueled attempts to automate more of the human role in complex problem solving domains, especially those where system faults have high consequences and where periods of high workload may saturate the performance capacity of human operators. Examples of these domains include flightdecks, space stations, air traffic control, nuclear power operation, ground satellite control rooms, and surgical operating rooms. Automation efforts may have unanticipated effects on human performance, particularly if they increase the workload at peak workload times or change the practitioners' strategies for coping with workload. Smooth and effective changes in automation requires detailed understanding of the congnitive tasks confronting the user: it has been called user centered automation. The introduction of a new computerized technology in a group of hospital operating rooms used for heart surgery was observed. The study revealed how automation, especially 'clumsy automation', effects practitioner work patterns and suggest that clumsy automation constrains users in specific and significant ways. Users tailor both the new system and their tasks in order to accommodate the needs of process and production. The study of this tailoring may prove a powerful tool for exposing previously hidden patterns of user data processing, integration, and decision making which may, in turn, be useful in the design of more effective human-machine systems
Fragmentation of Nuclei at Intermediate and High Energies in Modified Cascade Model
The process of nuclear multifragmentation has been implemented, together with
evaporation and fission channels of the disintegration of excited remnants in
nucleus-nucleus collisions using percolation theory and the intranuclear
cascade model. Colliding nuclei are treated as face--centered--cubic lattices
with nucleons occupying the nodes of the lattice. The site--bond percolation
model is used. The code can be applied for calculation of the fragmentation of
nuclei in spallation and multifragmentation reactions.Comment: 19 pages, 10 figure
From one solution of a 3-satisfiability formula to a solution cluster: Frozen variables and entropy
A solution to a 3-satisfiability (3-SAT) formula can be expanded into a
cluster, all other solutions of which are reachable from this one through a
sequence of single-spin flips. Some variables in the solution cluster are
frozen to the same spin values by one of two different mechanisms: frozen-core
formation and long-range frustrations. While frozen cores are identified by a
local whitening algorithm, long-range frustrations are very difficult to trace,
and they make an entropic belief-propagation (BP) algorithm fail to converge.
For BP to reach a fixed point the spin values of a tiny fraction of variables
(chosen according to the whitening algorithm) are externally fixed during the
iteration. From the calculated entropy values, we infer that, for a large
random 3-SAT formula with constraint density close to the satisfiability
threshold, the solutions obtained by the survey-propagation or the walksat
algorithm belong neither to the most dominating clusters of the formula nor to
the most abundant clusters. This work indicates that a single solution cluster
of a random 3-SAT formula may have further community structures.Comment: 13 pages, 6 figures. Final version as published in PR
Black hole evolution by spectral methods
Current methods of evolving a spacetime containing one or more black holes
are plagued by instabilities that prohibit long-term evolution. Some of these
instabilities may be due to the numerical method used, traditionally finite
differencing. In this paper, we explore the use of a pseudospectral collocation
(PSC) method for the evolution of a spherically symmetric black hole spacetime
in one dimension using a hyperbolic formulation of Einstein's equations. We
demonstrate that our PSC method is able to evolve a spherically symmetric black
hole spacetime forever without enforcing constraints, even if we add dynamics
via a Klein-Gordon scalar field. We find that, in contrast to
finite-differencing methods, black hole excision is a trivial operation using
PSC applied to a hyperbolic formulation of Einstein's equations. We discuss the
extension of this method to three spatial dimensions.Comment: 20 pages, 17 figures, submitted to PR
Conformal thin-sandwich puncture initial data for boosted black holes
We apply the puncture approach to conformal thin-sandwich black-hole initial
data. We solve numerically the conformal thin-sandwich puncture (CTSP)
equations for a single black hole with non-zero linear momentum. We show that
conformally flat solutions for a boosted black hole have the same maximum
gravitational radiation content as the corresponding Bowen-York solution in the
conformal transverse-traceless decomposition. We find that the physical
properties of these data are independent of the free slicing parameter.Comment: 12 pages, 11 figure
Ranking Templates for Linear Loops
We present a new method for the constraint-based synthesis of termination
arguments for linear loop programs based on linear ranking templates. Linear
ranking templates are parametrized, well-founded relations such that an
assignment to the parameters gives rise to a ranking function. This approach
generalizes existing methods and enables us to use templates for many different
ranking functions with affine-linear components. We discuss templates for
multiphase, piecewise, and lexicographic ranking functions. Because these
ranking templates require both strict and non-strict inequalities, we use
Motzkin's Transposition Theorem instead of Farkas Lemma to transform the
generated -constraint into an -constraint.Comment: TACAS 201
- …