6 research outputs found

    Modelagem e simulação de chamas difusivas de H2, formato de metila e decanoato de metila usando o método REDIM

    Get PDF
    Nas últimas décadas o consumo de energia tem aumentado consideravelmente. Uma alternativa energética renovável com benefícios ambientais é o uso de biocombustí- veis, a fim de evitar a dependência de combustíveis fósseis. Desta forma, faz-se necessário um melhor entendimento sobre a combustão dos biocombustíveis. A combustão é descrita pelas equações de continuidade, quantidade de movimento, conservação de espécies químicas e de energia, com forte acoplamento entre as equações. Nos sistemas químicos, cujas escalas de tempo variam em várias ordens de magnitude, algumas reações são rápidas comparadas com os processos físicos, tais como a difusão, convecção, turbulência, e outras reações são consideradas lentas. Os sistemas químicos com escalas de tempo rápidas geram sistemas numéricos rígidos (stiff). Quando isto acontece, a obtenção da solução das equações diferenciais precisa de várias etapas com passos de tempo pequenos, sendo o custo computacional elevado. Assim, é necessário reduzir o número de reações dos mecanismos cinéticos. Neste trabalho, apresenta-se a modelagem e simulação de chamas difusivas de hidrogênio, do biocombustível methyl formate (formato de metila) e methyl decanoate (Decanoato de metila). O método Reaction-Diffusion Manifold (REDIM) unidimensional foi usado para hidrogênio, methyl formate e methyl decanoate e REDIM bidimensional foi usado para methyl decanoate. As equações diferenciais parciais da continuidade, quantidade de movimento, fração de mistura e a equação de fração de massa para dióxido de carbono (para REDIM 2D), são discretizadas usando o método de dife- renças finitas, gerando sistemas de equações que são resolvidos usando o método de Runge-Kutta Simplificado. Na parte química, usa-se o método semi-implícito de Rosenbrock. Os resultados obtidos para o hidrogênio foram comparadas com dados da literatura. Para o methyl formate foram obtidos os principais produtos, sendo comparados com os dados experimentais do combustível methyl butanoate (butanoato de metila), apresentando concordância razoável. Os principais produtos do decanoato de metila foram comparados com dados da literatura. A principal contribuição deste trabalho é usar o método REDIM na modelagem e simulação de chamas difusivas para o sustituto do biodiesel MD.In recent decades, energy consumption has increased considerably. A renewable energy alternative with environmental benefits is the use of biofuels in order to avoid dependence on fossil fuels. Thus, a better understanding of the combustion of biofuels is needed. Combustion is described by the equations of continuity, momen- tum, conservation of chemical species and energy, with strong coupling between the equations. In chemical systems, whose time scales vary by several orders of mag- nitude, some reactions are fast compared to physical processes, such as diffusion, convection, turbulence, while other reactions are slow. Chemical problems with fast time scales generate stiff (rigid) numerical systems. When this happens, the solution of the differential equations requires several steps with small time steps, and the computational cost is high. Thus, it is necessary to reduce the number of reac- tions of the kinetic mechanisms. In this work, the modeling and simulation of jet diffusion flames of hydrogen, methyl formate and methyl decanoate are presented. One-dimensional Reaction Diffusion Manifold (REDIM) method was used for hydro- gen, methyl formate and methyl decanoate and two-dimensional REDIM was used for methyl decanoate. The partial differential equations for continuity, momentum, mixture fraction and for the carbon dioxide mass fraction (for the two-dimensional REDIM) are discretized using the finite difference method, generating systems of equations that are solved using the method of Runge-Kutta Simplified. In the chemical part, Rosenbrock’s semi-implicit method is used. The results obtained for hydrogen were compared with data from the literature. For the methyl formate biofuel, the main products were obtained, being compared with the experimental data of the Methyl Butanoate fuel, showing reasonable agreement. For the methyl decanoate, its main products were compared with data from the literature. The main contribution of this work is to use the REDIM method in the modeling and simulation of diffusion flames of the biodiesel substitute MD

    The Stiffness Phenomena for the Epidemiological SIR Model: a Numerical Approach

    Get PDF
    Mathematical models are among the most successful strategies for predicting the dynamics of a disease spreading in a population. Among them, the so-called compartmental models, where the total population is proportionally divided into compartments, are widely used. The SIR model (Susceptible-Infected-Recovered) is one of them, where the dynamics between the compartments follows a system of nonlinear differential equations. As a result of the non-linearity of the SIR dynamics, it has no analytical solution. Therefore, some numerical methods must be used to obtain an approximate solution. In this contribution, we present simulated scenarios for the SIR model showing its stiffness, a phenomenon that implies the necessity of a small step size choice in the numerical approximation. The numerical results, in particular, show that the stiffness phenomenon increases with higher transmission rates and lower birth and mortality rates . We compare the numerical solutions and errors for the SIR model using explicit Euler, Runge Kutta, and the semi-implicit Rosenbrock methods and analyze the numerical implications of the stiffness on them. As a result, we conclude that any accurate numerical solution of the SIR model will depend on an appropriately chosen numerical method and the time step, in terms of the values of the parameters

    The Stiffness Phenomena for the Epidemiological SIR Model: a Numerical Approach

    Get PDF
    Mathematical models are among the most successful strategies for predicting the dynamics of a disease spreading in a population. Among them, the so-called compartmental models, where the total population is proportionally divided into compartments, are widely used. The SIR model (Susceptible-Infected-Recovered) is one of them, where the dynamics between the compartments follows a system of nonlinear differential equations. As a result of the non-linearity of the SIR dynamics, it has no analytical solution. Therefore, some numerical methods must be used to obtain an approximate solution. In this contribution, we present simulated scenarios for the SIR model showing its stiffness, a phenomenon that implies the necessity of a small step size choice in the numerical approximation. The numerical results, in particular, show that the stiffness phenomenon increases with higher transmission rates and lower birth and mortality rates . We compare the numerical solutions and errors for the SIR model using explicit Euler, Runge Kutta, and the semi-implicit Rosenbrock methods and analyze the numerical implications of the stiffness on them. As a result, we conclude that any accurate numerical solution of the SIR model will depend on an appropriately chosen numerical method and the time step, in terms of the values of the parameters

    Modelagem matemática do espalhamento do poluente mercúrio na água

    Get PDF
    O objetivo deste trabalho e a modelagem matem atica da propagaçãao do poluente mercúrio na agua. O modelo bidimensional consiste na drenagem da agua atrav es de um canal, onde o poluente (mercúrio) entra. O modelo consiste em um conjunto de equaçõoes diferenciais parciais: as equações para a conservação da massa, a quantidade de movimento, e a concentração das espécies, sujeitas a condições iniciais e de contorno apropriadas. Estas equações foram discretizadas pelo método de diferenças finitas centrais, gerando sistemas lineares que foram resolvidos pelo método de Gauss-Seidel e a convergência foi acelerada usando a técnica de sobre-relaxações SOR. A an alise da consistência e estabilidade da equação de concentração foi feita. Além disso, a solução analítica da equação de concentração, que e uma equação diferencial parcial bidimensional não homogênea com uma condição de contorno não homogênea, foi obtida com a transformada de Laplace. Os resultados obtidos a partir do modelo numérico e da solução analítica foram comparados e apresentam concordância razoável.The goal of this work is the mathematical modeling of the spreading of the polluting mercury in the water. The two-dimensional model consists of water drainage through a canal, where the pollutant (mercury) enters. The model consists of a set of partial di erential equations: the equations for the conservation of the mass, the momentum, and the concentration of the species, subject to appropriate initial and boundary conditions. These equations were discretized by the method of central nite di erences, generating linear systems, which were solved by the Gauss-Seidel method and convergence was accelerated using the over-relaxation SOR technique. The analysis of the consistency and stability of the concentration equation was made. Furthermore, the analytical solution of the concentration equation, which is a two-dimensional non-homogeneous partial di erential equation with one nonhomogeneous contour condition, was obtained using Laplace transform. The results obtained from the numerical model and the analytical solution were compared and presented reasonable agreement

    Modelagem matemática do espalhamento do poluente mercúrio na água

    Get PDF
    O objetivo deste trabalho e a modelagem matem atica da propagaçãao do poluente mercúrio na agua. O modelo bidimensional consiste na drenagem da agua atrav es de um canal, onde o poluente (mercúrio) entra. O modelo consiste em um conjunto de equaçõoes diferenciais parciais: as equações para a conservação da massa, a quantidade de movimento, e a concentração das espécies, sujeitas a condições iniciais e de contorno apropriadas. Estas equações foram discretizadas pelo método de diferenças finitas centrais, gerando sistemas lineares que foram resolvidos pelo método de Gauss-Seidel e a convergência foi acelerada usando a técnica de sobre-relaxações SOR. A an alise da consistência e estabilidade da equação de concentração foi feita. Além disso, a solução analítica da equação de concentração, que e uma equação diferencial parcial bidimensional não homogênea com uma condição de contorno não homogênea, foi obtida com a transformada de Laplace. Os resultados obtidos a partir do modelo numérico e da solução analítica foram comparados e apresentam concordância razoável.The goal of this work is the mathematical modeling of the spreading of the polluting mercury in the water. The two-dimensional model consists of water drainage through a canal, where the pollutant (mercury) enters. The model consists of a set of partial di erential equations: the equations for the conservation of the mass, the momentum, and the concentration of the species, subject to appropriate initial and boundary conditions. These equations were discretized by the method of central nite di erences, generating linear systems, which were solved by the Gauss-Seidel method and convergence was accelerated using the over-relaxation SOR technique. The analysis of the consistency and stability of the concentration equation was made. Furthermore, the analytical solution of the concentration equation, which is a two-dimensional non-homogeneous partial di erential equation with one nonhomogeneous contour condition, was obtained using Laplace transform. The results obtained from the numerical model and the analytical solution were compared and presented reasonable agreement
    corecore