29 research outputs found

    COMe: the ontology of bioinorganic proteins

    Get PDF
    BACKGROUND: Many characterised proteins contain metal ions, small organic molecules or modified residues. In contrast, the huge amount of data generated by genome projects consists exclusively of sequences with almost no annotation. One of the goals of the structural genomics initiative is to provide representative three-dimensional (3-D) structures for as many protein/domain folds as possible to allow successful homology modelling. However, important functional features such as metal co-ordination or a type of prosthetic group are not always conserved in homologous proteins. So far, the problem of correct annotation of bioinorganic proteins has been largely ignored by the bioinformatics community and information on bioinorganic centres obtained by methods other than crystallography or NMR is only available in literature databases. RESULTS: COMe (Co-Ordination of Metals) represents the ontology for bioinorganic and other small molecule centres in complex proteins. COMe consists of three types of entities: 'bioinorganic motif' (BIM), 'molecule' (MOL), and 'complex proteins' (PRX), with each entity being assigned a unique identifier. A BIM consists of at least one centre (metal atom, inorganic cluster, organic molecule) and two or more endogenous and/or exogenous ligands. BIMs are represented as one-dimensional (1-D) strings and 2-D diagrams. A MOL entity represents a 'small molecule' which, when in complex with one or more polypeptides, forms a functional protein. The PRX entities refer to the functional proteins as well as to separate protein domains and subunits. The complex proteins in COMe are subdivided into three categories: (i) metalloproteins, (ii) organic prosthetic group proteins and (iii) modified amino acid proteins. The data are currently stored in both XML format and a relational database and are available at . CONCLUSION: COMe provides the classification of proteins according to their 'bioinorganic' features and thus is orthogonal to other classification schemes, such as those based on sequence similarity, 3-D fold, enzyme activity, or biological process. The hierarchical organisation of the controlled vocabulary allows both for annotation and querying at different levels of granularity

    The modENCODE Data Coordination Center: lessons in harvesting comprehensive experimental details.

    Get PDF
    The model organism Encyclopedia of DNA Elements (modENCODE) project is a National Human Genome Research Institute (NHGRI) initiative designed to characterize the genomes of Drosophila melanogaster and Caenorhabditis elegans. A Data Coordination Center (DCC) was created to collect, store and catalog modENCODE data. An effective DCC must gather, organize and provide all primary, interpreted and analyzed data, and ensure the community is supplied with the knowledge of the experimental conditions, protocols and verification checks used to generate each primary data set. We present here the design principles of the modENCODE DCC, and describe the ramifications of collecting thorough and deep metadata for describing experiments, including the use of a wiki for capturing protocol and reagent information, and the BIR-TAB specification for linking biological samples to experimental results. modENCODE data can be found at http://www.modencode.org

    InterMine: extensive web services for modern biology.

    Get PDF
    InterMine (www.intermine.org) is a biological data warehousing system providing extensive automatically generated and configurable RESTful web services that underpin the web interface and can be re-used in many other applications: to find and filter data; export it in a flexible and structured way; to upload, use, manipulate and analyze lists; to provide services for flexible retrieval of sequence segments, and for other statistical and analysis tools. Here we describe these features and discuss how they can be used separately or in combinations to support integrative and comparative analysis

    modMine: flexible access to modENCODE data.

    Get PDF
    In an effort to comprehensively characterize the functional elements within the genomes of the important model organisms Drosophila melanogaster and Caenorhabditis elegans, the NHGRI model organism Encyclopaedia of DNA Elements (modENCODE) consortium has generated an enormous library of genomic data along with detailed, structured information on all aspects of the experiments. The modMine database (http://intermine.modencode.org) described here has been built by the modENCODE Data Coordination Center to allow the broader research community to (i) search for and download data sets of interest among the thousands generated by modENCODE; (ii) access the data in an integrated form together with non-modENCODE data sets; and (iii) facilitate fine-grained analysis of the above data. The sophisticated search features are possible because of the collection of extensive experimental metadata by the consortium. Interfaces are provided to allow both biologists and bioinformaticians to exploit these rich modENCODE data sets now available via modMine

    Expression of Tissue factor in Adenocarcinoma and Squamous Cell Carcinoma of the Uterine Cervix: Implications for immunotherapy with hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer continues to be an important worldwide health problem for women. Up to 35% of patients who are diagnosed with and appropriately treated for cervical cancer will recur and treatment results are poor for recurrent disease. Given these sobering statistics, development of novel therapies for cervical cancer remains a high priority. We evaluated the expression of Tissue Factor (TF) in cervical cancer and the potential of hI-con1, an antibody-like-molecule targeted against TF, as a novel form of immunotherapy against multiple primary cervical carcinoma cell lines with squamous- and adenocarcinoma histology.</p> <p>Methods</p> <p>Because TF is a transmembrane receptor for coagulation factor VII/VIIa (fVII), in this study we evaluated the <it>in vitro </it>expression of TF in cervical carcinoma cell lines by immunohistochemistry (IHC), real time-PCR (qRT-PCR) and flow cytometry. Sensitivity to hI-con1-dependent cell-mediated-cytotoxicity (IDCC) was evaluated in 5-hrs-<sup>51</sup>chromium-release-assays against cervical cancer cell lines <it>in vitro</it>.</p> <p>Results</p> <p>Cytoplasmic and/or membrane TF expression was observed in 8 out of 8 (100%) of the tumor tissues tested by IHC and in 100% (11 out of 11) of the cervical carcinoma cell lines tested by real-time-PCR and flow cytometry but not in normal cervical keratinocytes (<it>p </it>= 0.0023 qRT-PCR; <it>p </it>= 0.0042 flow cytometry). All primary cervical cancer cell lines tested overexpressing TF, regardless of their histology, were highly sensitive to IDCC (mean killing ± SD, 56.2% ± 15.9%, range, 32.4%-76.9%, <it>p </it>< 0.001), while negligible cytotoxicity was seen in the absence of hI-con1 or in the presence of rituximab-control-antibody. Low doses of interleukin-2 further increased the cytotoxic effect induced by hI-con1 (<it>p </it>= 0.025) while human serum did not significantly decrease IDCC against cervical cancer cell lines (<it>p </it>= 0.597).</p> <p>Conclusions</p> <p>TF is highly expressed in squamous and adenocarcinoma of the uterine cervix. hI-con1 induces strong cytotoxicity against primary cervical cancer cell lines overexpressing TF and may represent a novel therapeutic agent for the treatment of cervical cancer refractory to standard treatment modalities.</p

    CARDIOVASCULAR RISK IN ESSENTIAL THROMBOCYTHEMIA AND POLYCYTHEMIA VERA: THROMBOTIC RISK AND SURVIVAL

    Get PDF
    Thromboembolic and bleeding events pose a severe risk for patients with Polycythemia Vera (PV) and Essential Thrombocythemia (ET). Many factors can contribute to promoting the thrombotic event due to the interaction between platelets, leukocytes, and endothelium alterations. Moreover, a significant role can be played by cardiovascular risk factors (CV.R) such as cigarette smoking habits, hypertension, diabetes, obesity and dyslipidemia. In this study, we evaluated the impact that CV.R plays on thrombotic risk and survival in patients with PV and ET
    corecore