12,387 research outputs found

    Bouncing solutions from generalized EoS

    Full text link
    We present an exact analytical bouncing solution for a closed universe filled with only one exotic fluid with negative pressure, obeying a Generalized Equations of State (GEoS) of the form P(ρ)=Aρ+BρλP(\rho)=A\rho+B\rho^{\lambda}, where AA, BB and λ\lambda are constants. In our solution A=1/3A=-1/3 and λ=1/2\lambda=1/2 and B<0B<0 is kept as a free parameter. For particular values of the initial conditions, we obtain that our solution obeys Null Energy Condition (NEC), which allows us to reinterpret the matter source as that of a real scalar field, ϕ\phi, with a positive kinetic energy and a potential V(ϕ)V(\phi). We compute numerically the scalar field as a function of time as well as its potential V(ϕ)V(\phi), and find an analytical function for the potential that fits very accurately with the numerical results obtained. The shape of this potential can be well described by a Gaussian-type of function, and hence, there is no spontaneous symmetry minimum of V(ϕ)V(\phi). We further show that the bouncing scenario is structurally stable under small variations of the parameter AA, such that a family of bouncing solutions can be find numerically, in a small vicinity of the value A=1/3A=-1/3.Comment: 12 pages, 12 figure

    Low EUV Luminosities Impinging on Protoplanetary Disks

    Get PDF
    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the EUV luminosity impinging on 14 disks around young (~2-10Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 1042^{42} photons/s for all sources without jets and lower than 5×10405 \times 10^{40} photons/s for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [NeII] 12.81 micron luminosities from three disks with slow [NeII]-detected winds. This indicates that the [NeII] line in these sources primarily traces a mostly neutral wind where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative mass loss rates than those predicted by EUV-driven models alone. In summary, our results suggest that high-energy stellar photons other than EUV may dominate the dispersal of protoplanetary disks around sun-like stars.Comment: Accepted for publication to The Astrophysical Journa

    Tracing the Conversion of Gas into Stars in Young Massive Cluster Progenitors

    Full text link
    Whilst young massive clusters (YMCs; MM \gtrsim 104^{4} M_{\odot}, age \lesssim 100 Myr) have been identified in significant numbers, their progenitor gas clouds have eluded detection. Recently, four extreme molecular clouds residing within 200 pc of the Galactic centre have been identified as having the properties thought necessary to form YMCs. Here we utilise far-IR continuum data from the Herschel Infrared Galactic Plane Survey (HiGAL) and millimetre spectral line data from the Millimetre Astronomy Legacy Team 90 GHz Survey (MALT90) to determine their global physical and kinematic structure. We derive their masses, dust temperatures and radii and use virial analysis to conclude that they are all likely gravitationally bound -- confirming that they are likely YMC progenitors. We then compare the density profiles of these clouds to those of the gas and stellar components of the Sagittarius B2 Main and North proto-clusters and the stellar distribution of the Arches YMC. We find that even in these clouds -- the most massive and dense quiescent clouds in the Galaxy -- the gas is not compact enough to form an Arches-like (MM = 2x104^{4} M_{\odot}, Reff_{eff} = 0.4 pc) stellar distribution. Further dynamical processes would be required to condense the resultant population, indicating that the mass becomes more centrally concentrated as the (proto)-cluster evolves. These results suggest that YMC formation may proceed hierarchically rather than through monolithic collapse.Comment: 12 pages, 8 figures, 1 table. Accepted by MNRA
    corecore