39 research outputs found

    SuperMALT: Physical and Chemical Properties of Massive and Dense Clumps

    Get PDF
    The SuperMALT survey is observing 76 MALT90 clumps at different evolutionary stages (from pre-stellar or quiescent to HII) in high excitation molecular lines and key isotopomers using the Apex 12m telescope with an angular resolution of \sim20" and a velocity resolution of \sim0.1 km/s. The aim of this survey is to determine the physical, chemical, and kinematical properties of the gas within clumps as they evolve. Here we report some preliminary results based on observations of the JJ=3-2 \& 4-3 lines of HNC, HCN, HCO+^+, N2_2H+^+ and of the JJ=3-2 line of the isotopologue H13^{13}CO+^+. We find that the morphologies and line profiles vary with the evolutionary stage of the clumps. The average line width increases from quiescent to HII clumps while line ratios show hint of chemical differences among the various evolutionary stages.Comment: 7 pages, 6 figures, Astrochemistry VII: IAU Symposium No. 33

    The Carina Nebula and Gum 31 molecular complex: II. The distribution of the atomic gas revealed in unprecedented detail

    Get PDF
    We report high spatial resolution observations of the HI 21cm line in the Carina Nebula and the Gum 31 region obtained with the Australia Telescope Compact Array. The observations covered \sim 12 deg2^2 centred on l=287.5deg,b=1degl= 287.5\deg,b = -1\deg, achieving an angular resolution of \sim 35 arcseconds. The HI map revealed complex filamentary structures across a wide range of velocities. Several "bubbles" are clearly identified in the Carina Nebula Complex, produced by the impact of the massive star clusters located in this region. An HI absorption profile obtained towards the strong extragalactic radio source PMN J1032--5917 showed the distribution of the cold component of the atomic gas along the Galactic disk, with the Sagittarius-Carina and Perseus spiral arms clearly distinguishable. Preliminary calculations of the optical depth and spin temperatures of the cold atomic gas show that the HI line is opaque (τ\tau \gtrsim 2) at several velocities in the Sagittarius-Carina spiral arm. The spin temperature is 100\sim100 K in the regions with the highest optical depth, although this value might be lower for the saturated components. The atomic mass budget of Gum 31 is 35%\sim35 \% of the total gas mass. HI self absorption features have molecular counterparts and good spatial correlation with the regions of cold dust as traced by the infrared maps. We suggest that in Gum 31 regions of cold temperature and high density are where the atomic to molecular gas phase transition is likely to be occurring.Comment: 20 pages, 1 table, 16 Figures, Accepted for Publication in the Monthly Notices of the Royal Astronomical Society Journa

    A multiwavelength study of young massive star forming regions: II. The dust environment

    Full text link
    We present observations of 1.2-mm dust continuum emission, made with the Swedish ESO Submillimeter Telescope, towards eighteen luminous IRAS point sources, all with colors typical of compact HII regions and associated with CS(2-1) emission, thought to be representative of young massive star forming regions. Emission was detected toward all the IRAS objects. We find that the 1.2-mm sources associated with them have distinct physical parameters, namely sizes of 0.4 pc, dust temperatures of 30 K, masses of 2x10^3 Msun, column densities of 3x10^23 cm^-2, and densities of 4x10^5 cm^-3. We refer to these dust structures as massive and dense cores. Most of the 1.2-mm sources show single-peaked structures, several of which exhibit a bright compact peak surrounded by a weaker extended envelope. The observed radial intensity profiles of sources with this type of morphology are well fitted with power-law intensity profiles with power-law indices in the range 1.0-1.7. This result indicates that massive and dense cores are centrally condensed, having radial density profiles with power-law indices in the range 1.5-2.2. We also find that the UC HII regions detected with ATCA towards the IRAS sources investigated here (Paper I) are usually projected at the peak position of the 1.2-mm dust continuum emission, suggesting that massive stars are formed at the center of the centrally condensed massive and dense cores.Comment: 6 figures, accepted by Ap

    Characterizing [C II] Line Emission In Massive Star Forming Clumps

    Full text link
    Because the 157.74 micron [C II] line is the dominant coolant of star-forming regions, it is often used to infer the global star-formation rates of galaxies. By characterizing the [C II] and far-infrared emission from nearby Galactic star-forming molecular clumps, it is possible to determine whether extragalactic [C II] emission arises from a large ensemble of such clumps, and whether [C II] is indeed a robust indicator of global star formation. We describe [C II] and far-infrared observations using the FIFI-LS instrument on the SOFIA airborne observatory toward four dense, high-mass, Milky Way clumps. Despite similar far-infrared luminosities, the [C II] to far-infrared luminosity ratio, L([C II])/L(FIR) varies by a factor of at least 140 among these four clumps. In particular, for AGAL313.576+0.324, no [C II] line emission is detected despite a FIR luminosity of 24,000 L_sun. AGAL313.576+0.324 lies a factor of more than 100 below the empirical correlation curve between L([C II])/L(FIR) and S_\nu (63 micron)/S_\nu (158 micron) found for galaxies. AGAL313.576+0.324 may be in an early evolutionary "protostellar" phase with insufficient ultraviolet flux to ionize carbon, or in a deeply embedded ``hypercompact' H II region phase where dust attenuation of UV flux limits the region of ionized carbon to undetectably small volumes. Alternatively, its apparent lack of \cii\, emission may arise from deep absorption of the \cii\, line against the 158 micron continuum, or self-absorption of brighter line emission by foreground material, which might cancel or diminish any emission within the FIFI-LS instrument's broad spectral resolution element (~250 km/s

    Infall Signatures in a Prestellar Core embedded in the High-Mass 70 μ\mum Dark IRDC G331.372-00.116

    Get PDF
    Using Galactic Plane surveys, we have selected a massive (1200 M_\odot), cold (14 K) 3.6-70 μ\mum dark IRDC G331.372-00.116. This IRDC has the potential to form high-mass stars and, given the absence of current star formation signatures, it seems to represent the earliest stages of high-mass star formation. We have mapped the whole IRDC with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.1 and 1.3 mm in dust continuum and line emission. The dust continuum reveals 22 cores distributed across the IRDC. In this work, we analyze the physical properties of the most massive core, ALMA1, which has no molecular outflows detected in the CO (2-1), SiO (5-4), and H2_2CO (3-2) lines. This core is relatively massive (MM = 17.6 M_\odot), subvirialized (virial parameter αvir=Mvir/M=0.14\alpha_{vir}=M_{vir}/M=0.14), and is barely affected by turbulence (transonic Mach number of 1.2). Using the HCO+^+ (3-2) line, we find the first detection of infall signatures in a relatively massive, prestellar core (ALMA1) with the potential to form a high-mass star. We estimate an infall speed of 1.54 km s1^{-1} and a high accretion rate of 1.96 ×\times 103^{-3} M_\odot yr1^{-1}. ALMA1 is rapidly collapsing, out of virial equilibrium, more consistent with competitive accretion scenarios rather than the turbulent core accretion model. On the other hand, ALMA1 has a mass \sim6 times larger than the clumps Jeans mass, being in an intermediate mass regime (MJ=2.7<MM_{J}=2.7<M\lesssim 30 M_\odot), contrary to what both the competitive accretion and turbulent core accretion theories predict.Comment: 13 Pages, 5 Figures, 3 Table

    The ALMA Survey of 70 μm\mu \rm m Dark High-mass Clumps in Early Stages (ASHES). II: Molecular Outflows in the Extreme Early Stages of Protocluster Formation

    Full text link
    We present a study of outflows at extremely early stages of high-mass star formation obtained from the ALMA Survey of 70 μm\mu \rm m dark High-mass clumps in Early Stages (ASHES). Twelve massive 3.6-70 μm\mu \rm m dark prestellar clump candidates were observed with the Atacama Large Millimeter/submillimeter Array (ALMA) in Band 6. Forty-three outflows are identified toward 41 out of 301 dense cores using the CO and SiO emission lines, yielding a detection rate of 14%. We discover 6 episodic molecular outflows associated with low- to high-mass cores, indicating that episodic outflows (and therefore episodic accretion) begin at extremely early stages of protostellar evolution for a range of core masses. The time span between consecutive ejection events is much smaller than those found in more evolved stages, which indicates that the ejection episodicity timescale is likely not constant over time. The estimated outflow dynamical timescale appears to increase with core masses, which likely indicates that more massive cores have longer accretion timescales than less massive cores. The lower accretion rates in these 70 μm\mu \rm m dark objects compared to the more evolved protostars indicate that the accretion rates increase with time. The total outflow energy rate is smaller than the turbulent energy dissipation rate, which suggests that outflow induced turbulence cannot sustain the internal clump turbulence at the current epoch. We often detect thermal SiO emission within these 70 μm\mu \rm m dark clumps that is unrelated to CO outflows. This SiO emission could be produced by collisions, intersection flows, undetected protostars, or other motions.Comment: 32 pages, 9 figures, 4 tables, accepted for publication in Ap
    corecore