4 research outputs found

    Tracking environmental change using low-cost instruments during the winter-spring transition season

    Get PDF
    Author Posting. © University of California Press, 2022. This article is posted here by permission of University of California Press for personal use, not for redistribution. The definitive version was published in Burakowski, E., Sallade, S., Contosta, A., Sanders-DeMott, R., & Grogan, D. Tracking environmental change using low-cost instruments during the winter-spring transition season. American Biology Teacher, 84(4), (2022): 219–222, https://doi.org/10.1525/abt.2022.84.4.219.The winter-spring shoulder season, or vernal window, is a key period for ecosystem carbon, water, and energy cycling. Sometimes referred to as mud season, in temperate forests, this transitional season opens with the melting of snowpack in seasonally snow-covered forests and closes when the canopy fills out. Sunlight pours onto the forest floor, soils thaw and warm, and there is an uptick in soil respiration. Scientists hypothesize that this window of ecological opportunity will lengthen in the future; these changes could have implications across all levels of the ecosystem, including the availability of food and water in human systems. Yet, there remains a dearth of observations that track both winter and spring indicators at the same location. Here, we present an inquiry-based, low-cost approach for elementary to high school classrooms to track environmental changes in the winter-spring shoulder season. Engagement in hypothesis generation and the use of claim, evidence, and reasoning practices are coupled with field measurement protocols, which provides teachers and students an authentic research experience that allows for a place-based understanding of local ecosystems and their connection to climate change.This study was supported by the National Science Foundation (NSF-MSB #1802726 and NSF-1920908) and the United States Forest Service CitSci Fund (#18-CS-11242307-044)

    Future of Winter in Northeastern North America: Climate Indicators Portray Warming and Snow Loss that will Impact Ecosystems and Communities

    Get PDF
    Winters in northeastern North America have warmed faster than summers, with impacts on ecosystems and society. Global climate models (GCMs) indicate that winters will continue to warm and lose snow in the future, but uncertainty remains regarding the magnitude of warming. Here, we project future trends in winter indicators under lower and higher climate-warming scenarios based on emission levels across northeastern North America at a fine spatial scale (1/16°) relevant to climate-related decision making. Under both climate scenarios, winters continue to warm with coincident increases in days above freezing, decreases in days with snow cover, and fewer nights below freezing. Deep snowpacks become increasingly short-lived, decreasing from a historical baseline of 2 months of subnivium habitat to warmer, higher-emissions climate scenario. Warmer winter temperatures allow invasive pests such as Adelges tsugae (Hemlock Woolly Adelgid) and Dendroctonus frontalis (Southern Pine Beetle) to expand their range northward due to reduced overwinter mortality. The higher elevations remain more resilient to winter warming compared to more southerly and coastal regions. Decreases in natural snowpack and warmer temperatures point toward a need for adaptation and mitigation in the multi-million-dollar winter-recreation and forest-management economies

    Maine Won\u27t Wait One-Year Progress Report, 2021

    Get PDF
    This document, an “Maine Climate Science Update 2021”, is an interim communication to the Maine Climate Council and the public about the ongoing work of the scientific community and recent events associated with climate change. It is divided into three sections: (1) current events that reflect the acceleration of extreme weather events in Maine and elsewhere with possible connections to climate change; (2) noteworthy scientific reports with national and international scope released in 2021; and (3) examples of recent peer-reviewed publications from the ongoing work of the scientific community to understand climate change in Maine

    Scientific Assessment of Climate Change and Its Effects in Maine

    Get PDF
    Climate change has already made its presence known in Maine, from shorter winters and warmer summers with ocean heat waves, to stronger storms, new species showing up in our backyards and the Gulf of Maine, aquatic algal blooms, acidic ocean waters that affect shellfish, and new pests and diseases that harm our iconic forests and fisheries. The health of Maine people is also being affected by climate change, from high heat index days driving increased emergency room visits to the ravages of Lyme and other vector-borne diseases. And our economy is feeling the effects, too — with farmers trying to adapt to longer growing seasons but dealing with severe storms and late frosts, aquaculturists already adapting to a more acidic ocean, and winter sports like skiing and snowmobiling being impacted by our shrinking winter season. This is the first report from the Maine Climate Council’s Scientific and Technical Subcommittee, produced by more than 50 scientists from around the State representing Scientific and Technical Subcommittee members, other co-authors, and contributors. This report is part of the 2020 Maine Climate Action Plan. The report summarizes how climate change has already impacted Maine and how it might continue affecting our State in the future
    corecore