76 research outputs found

    A Land Use Puzzle: Piecing Together How Forests, Croplands, and Residential Neighborhoods Interact with Climate

    Get PDF

    Pathological Jaundice

    Get PDF
    Neonatal jaundice is a common condition present in infants after birth. It is caused by elevated bilirubin in the blood. It can affect up to 84% of term infants and is one of the most common cause for hospital readmission for the neonatal department (Muchowski, 2014). It typically appears within 24 hours of life and is normally present in otherwise healthy newborns. Physiologic jaundice, also known as unconjugated bilirubin, is a normal process that happens in neonates because the hepatic system is not matured yet (Kirk, 2008). Majority of the time physiologic jaundice resolves on its own. Pathological jaundice, also known as conjugated bilirubin, in newborns is due to other reasons other than the normal pathologic process the newborn hepatic system goes through. It may be a result of endocrine or genetic disorders, which are considered to be rare (Kirk, 2008). A more common cause is due to ABO incompatibility. For the purpose of this poster the focus is going to be on pathologic elevated bilirubin specifically related to ABO incompatibility between mother and baby

    Seasonal, biogeochemical, and microbial response of soils to simultaneous warming and nitrogen additions

    Get PDF
    Climate warming and nitrogen deposition are global environmental threats that could alter soil microbial communities and the biogeochemical processes they perform. Few studies have examined interactive effects of elevated temperatures and nitrogen inputs. Many studies have also not considered the role that season plays in mediating the response of soils to warming and nitrogen. Finally, most research has not linked changes in the soil microbial community with ecosystem-scale dynamics. One objective of this dissertation was to examine season-specific microbial and biogeochemical responses to simultaneous warming and nitrogen additions. Another aim was to investigate whether warming and nitrogen can restructure microbial communities in such a way as to alter ecosystem processes. The research occurred at the Soil Warming x Nitrogen Addition study at the Harvard Forest, and included four treatments: control, warming, warming x nitrogen, and nitrogen additions. Soil respiration and nitrogen mineralization were measured continuously for two years. During winter, spring, summer, and fall of a single year, labile carbon, enzyme activity, microbial biomass, and microbial community structure were quantified. Finally, a wood decomposition study was conducted at the field site to examine changes in both wood decay and the fungi performing the decay. Results indicated season-specific responses of soil respiration, nitrogen mineralization, and microbial biomass to the experimental manipulations. Soil respiration and nitrogen mineralization increased with warming and nitrogen additions, even during winter. Soil respiration in the warming treatment also displayed heightened temperature sensitivity during winter months. By contrast, microbial biomass declined with warming and nitrogen and this decline primarily occurred in autumn. Where warming x nitrogen occurred together, warming appeared to moderate the negative effect of nitrogen additions on soil respiration and microbial biomass. Regarding the decomposition experiment, nitrogen additions suppressed wood decay while warming had no effect. The combination of warming x nitrogen was synergistic, accelerating wood decay beyond either treatment on its own. Lower decay rates in fertilized plots were not associated with a concomitant change in the structure of the fungal community colonizing the wood. Overall, the findings suggest that anthropogenic stressors and seasonal changes can interact to affect soil microbial communities and biogeochemical cycles

    Seasonal dynamics of soil respiration and nitrogen mineralization in chronically warmed and fertilized soils

    Get PDF
    Although numerous studies have examined the individual effects of increased temperatures and N deposition on soil biogeochemical cycling, few have considered how these disturbances interact to impact soil C and N dynamics. Likewise, many have not assessed season-specific responses to warming and N inputs despite seasonal variability in soil processes. We studied interactions among season, warming, and N additions on soil respiration and N mineralization at the Soil Warming × Nitrogen Addition Study at the Harvard Forest. Of particular interest were wintertime fluxes of C and N typically excluded from investigations of soils and global change. Soils were warmed to 5°C above ambient, and N was applied at a rate of 5 g m−2 y−1. Soil respiration and N mineralization were sampled over two years between 2007 and 2009 and showed strong seasonal patterns that mirrored changes in soil temperature. Winter fluxes of C and N contributed between 2 and 17% to the total annual flux. Net N mineralization increased in response to the experimental manipulations across all seasons, and was 8% higher in fertilized plots and 83% higher in warmed plots over the duration of the study. Soil respiration showed a more season-specific response. Nitrogen additions enhanced soil respiration by 14%, but this increase was significant only in summer and fall. Likewise, warming increased soil respiration by 44% over the whole study period, but the effect of warming was most pronounced in spring and fall. The only interaction between warming × N additions took place in autumn, when N availability likely diminished the positive effect of warming on soil respiration. Our results suggest that winter measurements of C and N are necessary to accurately describe winter biogeochemical processes. In addition, season-specific responses to the experimental treatments suggest that some components of the belowground community may be more susceptible to warming and N additions than others. Seasonal changes in the abiotic environment may have also interacted with the experimental manipulations to evoke biogeochemical responses at certain times of year

    Tracking environmental change using low-cost instruments during the winter-spring transition season

    Get PDF
    Author Posting. © University of California Press, 2022. This article is posted here by permission of University of California Press for personal use, not for redistribution. The definitive version was published in Burakowski, E., Sallade, S., Contosta, A., Sanders-DeMott, R., & Grogan, D. Tracking environmental change using low-cost instruments during the winter-spring transition season. American Biology Teacher, 84(4), (2022): 219–222, https://doi.org/10.1525/abt.2022.84.4.219.The winter-spring shoulder season, or vernal window, is a key period for ecosystem carbon, water, and energy cycling. Sometimes referred to as mud season, in temperate forests, this transitional season opens with the melting of snowpack in seasonally snow-covered forests and closes when the canopy fills out. Sunlight pours onto the forest floor, soils thaw and warm, and there is an uptick in soil respiration. Scientists hypothesize that this window of ecological opportunity will lengthen in the future; these changes could have implications across all levels of the ecosystem, including the availability of food and water in human systems. Yet, there remains a dearth of observations that track both winter and spring indicators at the same location. Here, we present an inquiry-based, low-cost approach for elementary to high school classrooms to track environmental changes in the winter-spring shoulder season. Engagement in hypothesis generation and the use of claim, evidence, and reasoning practices are coupled with field measurement protocols, which provides teachers and students an authentic research experience that allows for a place-based understanding of local ecosystems and their connection to climate change.This study was supported by the National Science Foundation (NSF-MSB #1802726 and NSF-1920908) and the United States Forest Service CitSci Fund (#18-CS-11242307-044)

    Future of Winter in Northeastern North America: Climate Indicators Portray Warming and Snow Loss that will Impact Ecosystems and Communities

    Get PDF
    Winters in northeastern North America have warmed faster than summers, with impacts on ecosystems and society. Global climate models (GCMs) indicate that winters will continue to warm and lose snow in the future, but uncertainty remains regarding the magnitude of warming. Here, we project future trends in winter indicators under lower and higher climate-warming scenarios based on emission levels across northeastern North America at a fine spatial scale (1/16°) relevant to climate-related decision making. Under both climate scenarios, winters continue to warm with coincident increases in days above freezing, decreases in days with snow cover, and fewer nights below freezing. Deep snowpacks become increasingly short-lived, decreasing from a historical baseline of 2 months of subnivium habitat to warmer, higher-emissions climate scenario. Warmer winter temperatures allow invasive pests such as Adelges tsugae (Hemlock Woolly Adelgid) and Dendroctonus frontalis (Southern Pine Beetle) to expand their range northward due to reduced overwinter mortality. The higher elevations remain more resilient to winter warming compared to more southerly and coastal regions. Decreases in natural snowpack and warmer temperatures point toward a need for adaptation and mitigation in the multi-million-dollar winter-recreation and forest-management economies

    Bringing an Equity Lens to EOS Research: Report of workshop findings and outcomes

    Get PDF
    On April 25, 2023 the JEDI-EOS group sponsored a workshop entitled Bringing an Equity Lens to EOS Research at the University of New Hampshire (UNH) in the Piscataqua Room at the Holloway Commons. The stated goal of the workshop was to synthesize and coordinate UNH’s efforts on geoscience topics impacting the health and well-being of under-served communities locally and regionally. The workshop welcomed approximately 35 participants primarily from the University of New Hampshire, but with representation from the NH Conservation Law Foundation, US Geological Survey, and NH Department of Environmental Services. A keynote address was provided by Dr. Daniel Faber from the Northeastern Environmental Justice Research Collaborative. The workshop entailed several session topics with ample time for discussion. At the conclusion of the workshop, participants were requested to provide a summary of their learning and opinions of important topics and 23 participants, including some members of the organizing committee, provided feedback that is summarized below. Many topics discussed throughout the day resonated with most of the participants, with many participants communicating that key factors that can enable more inclusive and equitable research outcomes include: Centering communities: Research in geoscience topics should reflect the needs and ideals of potentially affected communities. Boundary spanning: Researchers must leverage the existing roles of boundary spanners to interact successfully with communities. Institutional change: The timelines, incentives, and funding cycles of academic research should be reinvented to align with the needs of communities. Though these factors are identified as pre-requisites for furthering the academy’s commitment to equitable research, there remain significant unknowns in the proper path forward to achieving the ideals they represent

    A longer vernal window: The role of winter coldness and snowpack in driving spring thresholds and lags

    Get PDF
    Climate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire, USA, that concurrently monitored climate, snow, soils, and streams over a three-year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero-length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter-to-spring transition and throughout the rest of the year

    Influence of forest-to-silvopasture conversion and drought on components of evapotranspiration

    Get PDF
    The northeastern U.S. is projected to experience more frequent short-term (1-2 month) droughts interspersed among larger precipitation events. Agroforestry practices such as silvopasture may mitigate these impacts of climate change while maintaining economic benefits of both agricultural and forestry practices. This study evaluated the effects of forest-to-silvopasture (i.e., 50% thinning) conversion on the components of evapotranspiration (transpiration, rainfall interception, and soil evaporation) during the growing season of 2016. The study coincided with a late-summer drought throughout the northeastern U.S., which allowed us to also evaluate the effects of forest-to-silvopasture conversion on drought responses of multiple tree species, including Pinus strobus, Tsuga canadensis, and Quercus rubra. In the reference forest and silvopasture, we observed declining soil moisture and tree water use during the drought for all three tree species. However, the decline in P. strobus water use in response to declining soil moisture in the silvopasture was not as steep as compared with the reference forest, resulting in greater water use in the silvopasture for this species. In contrast, we did not detect different water-use responses between forest and silvopasture in T. canadensis or Q. rubra. This suggests that forest-to-silvopasture conversion via thinning can alleviate drought stress for P. strobus and that this species may be more sensitive to moisture stress when competition for water is high in denser stands. Evapotranspiration was 35% lower in the silvopasture compared with the reference forest, primarily a result of lower transpiration and rainfall interception. While soil evaporation was greater in the silvopasture, this was not enough to offset the considerably lower transpiration and interception. We observed greater radial tree growth 1-3 years following conversion in the silvopasture as compared with the reference forest for T. canadensis and Q. rubra, but not for P. strobus. Overall, our results suggest that forest conversion to silvopasture (in lieu of clearcutting for new pasture) may mitigate the impacts of agricultural land use intensification and climate change on ecosystem services, especially in terms of sustaining hydrologic regulation functions. Further study is required to determine the generality of these results and whether these benefits extend beyond the first few years post-conversion
    • …
    corecore