664 research outputs found

    Graviton loops and brane observables

    Get PDF
    We discuss how to consistently perform effective Lagrangian computations in quantum gravity with branes in compact extra dimensions. A reparametrization invariant and infrared finite result is obtained in a non trivial way. It is crucial to properly account for brane fluctuations and to correctly identify physical observables. Our results correct some confusing claims in the literature. We discuss the implications of graviton loops on electroweak precision observables and on the muon g-2 in models with large extra dimensions. We model the leading effects, not controlled by effective field theory, by introducing a hard momentum cut-off.Comment: 9 pages + 4 eps figures, JHEP style latex document. The paper is composed by a theoretical part, followed (after page 21) by a phenomenological part. v2: version published in JHEP, few typos corrected. v3: few additional typos corrected in the Appendi

    Factorization, charming penguins, and all that

    Get PDF
    We discuss few selected topics related to the calculation of hadronic amplitudes relevant for two-body non-leptonic B decays.Comment: LaTeX, 9 pages, 1 eps figure included, uses psfig.sty. Talk given by M.C. at Beauty '97, UCLA, USA, October 13-17, 199

    Gauge Threshold Corrections in Warped Geometry

    Full text link
    We discuss the Kaluza-Klein threshold correction to low energy gauge couplings in theories with warped extra-dimension, which might be crucial for the gauge coupling unification when the warping is sizable. Explicit expressions of one-loop thresholds are derived for generic 5D gauge theory on a slice of AdS_5, where some of the bulk gauge symmetries are broken by orbifold boundary conditions and/or by bulk Higgs vacuum values. Effects of the mass mixing between the bulk fields with different orbifold parities are included as such mixing is required in some class of realistic warped unification models.Comment: 33 pages, 1 figure, 6 tables, invited contribution to New Journal of Physics Focus Issue on 'Extra Space Dimensions

    Radius-dependent gauge unification in AdS5

    Get PDF
    We examine the relation of the 4-dimensional low energy coupling of bulk gauge boson in a slice of AdS5 to the 5-dimensional fundamental couplings as a function of the orbifold radius R. This allows us to address the gauge coupling unification in AdS5 by means of the radius running as well as the conventional momentum running. We then compute the radius dependence of 1-loop low energy couplings in generic AdS5 theory with 4-dimensional supersymmetry, and discuss the low energy predictions when the 5-dimensional couplings are assumed to be unified.Comment: 11 pages, 2 figures, revtex, v3: analysis was generalized to S^1/Z_2*Z_2 orbifoldin

    Gauge Theories in AdS5AdS_5 and Fine-Lattice Deconstruction

    Full text link
    The logarithmic energy dependence of gauge couplings in AdS_5 emerges almost automatically when the theory is deconstructed on a coarse lattice. Here we study the theory away from the coarse-lattice limit. While we cannot analytically calculate individual KK masses for a fine lattice, we can calculate the product of all non-zero masses. This allows us to write down the gauge coupling at low energies for any lattice-spacing and curvature. As expected, the leading log behaviour is corrected by power-law contributions, suppressed by the curvature. We then turn to intermediate energies, and discuss the gauge coupling and the gauge boson profile in perturbation theory around the coarse-lattice limit.Comment: 17 pages, 1 figure, typos in listing version of abstract correcte

    Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale

    Full text link
    Nearly conformal dynamics at the TeV scale as motivated by the hierarchy problem can be characterized by a stage of significant supercooling at the electroweak epoch. This has important cosmological consequences. In particular, a common assumption about the history of the universe is that the reheating temperature is high, at least high enough to assume that TeV-mass particles were once in thermal equilibrium. However, as we discuss in this paper, this assumption is not well justified in some models of strong dynamics at the TeV scale. We then need to reexamine how to achieve baryogenesis in these theories as well as reconsider how the dark matter abundance is inherited. We argue that baryonic and dark matter abundances can be explained naturally in these setups where reheating takes place by bubble collisions at the end of the strongly first-order phase transition characterizing conformal symmetry breaking, even if the reheating temperature is below the electroweak scale 100\sim 100 GeV. We also discuss inflation as well as gravity wave smoking gun signatures of this class of models.Comment: 22 pages, 7 figure

    Effective Action and Holography in 5D Gauge Theories

    Full text link
    We apply the holographic method to 5D gauge theories on the warped interval. Our treatment includes the scalars associated with the fifth gauge field component, which appear as 4D Goldstone bosons in the holographic effective action. Applications are considered to two classes of models in which these scalars play an important role. In the Composite-Higgs (and/or Gauge-Higgs Unification) scenario, the scalars are interpreted as the Higgs field and we use the holographic recipe to compute its one-loop potential. In AdS/QCD models, the scalars are identified with the mesons and we compute holographically the Chiral Perturbation Theory Lagrangian up to p^4 order. We also discuss, using the holographic perspective, the effect of including a Chern-Simons term in the 5D gauge Lagrangian. We show that it makes a Wess-Zumino-Witten term to appear in the holographic effective action. This is immediately applied to AdS/QCD, where a Chern-Simons term is needed in order to mimic the Adler-Bardeen chiral anomaly.Comment: 37 pages; v2, minor changes, one reference added; v3, minor corrections, version published in JHE

    Partially Supersymmetric Composite Higgs Models

    Get PDF
    We study the idea of the Higgs as a pseudo-Goldstone boson within the framework of partial supersymmetry in Randall-Sundrum scenarios and their CFT duals. The Higgs and third generation of the MSSM are composites arising from a strongly coupled supersymmetric CFT with global symmetry SO(5) spontaneously broken to SO(4), whilst the light generations and gauge fields are elementary degrees of freedom whose couplings to the strong sector explicitly break the global symmetry as well as supersymmetry. The presence of supersymmetry in the strong sector may allow the compositeness scale to be raised to ~10 TeV without fine tuning, consistent with the bounds from precision electro-weak measurements and flavour physics. The supersymmetric flavour problem is also solved. At low energies, this scenario reduces to the "More Minimal Supersymmetric Standard Model" where only stops, Higgsinos and gauginos are light and within reach of the LHC.Comment: 28 pages. v2 minor changes and Refs. adde

    Theoretical study of scattering in graphene ribbons in the presence of structural and atomistic edge roughness

    Full text link
    We investigate the diffusive electron-transport properties of charge-doped graphene ribbons and nanoribbons with imperfect edges. We consider different regimes of edge scattering, ranging from wide graphene ribbons with (partially) diffusive edge scattering to ribbons with large width variations and nanoribbons with atomistic edge roughness. For the latter, we introduce an approach based on pseudopotentials, allowing for an atomistic treatment of the band structure and the scattering potential, on the self-consistent solution of the Boltzmann transport equation within the relaxation-time approximation and taking into account the edge-roughness properties and statistics. The resulting resistivity depends strongly on the ribbon orientation, with zigzag (armchair) ribbons showing the smallest (largest) resistivity and intermediate ribbon orientations exhibiting intermediate resistivity values. The results also show clear resistivity peaks, corresponding to peaks in the density of states due to the confinement-induced subband quantization, except for armchair-edge ribbons that show a very strong width dependence because of their claromatic behavior. Furthermore, we identify a strong interplay between the relative position of the two valleys of graphene along the transport direction, the correlation profile of the atomistic edge roughness, and the chiral valley modes, leading to a peculiar strongly suppressed resistivity regime, most pronounced for the zigzag orientation.Comment: 13 pages, 7 figure
    corecore