8 research outputs found

    Searching in the dark: the dark mass content of the Milky Way globular clusters NGC288 and NGC6218

    Get PDF
    We present an observational estimate of the fraction and distribution of dark mass in the innermost region of the two Galactic globular clusters NGC 6218 (M12) and NGC 288. Such an assessment has been made by comparing the dynamical and luminous mass profiles derived from an accurate analysis of the most extensive spectroscopic and photometric surveys performed on these stellar systems. We find that non-luminous matter constitutes more than 60% of the total mass in the region probed by our data (R<1.6 arcmin~r_h) in both clusters. We have carefully analyzed the effects of binaries and tidal heating on our estimate and ruled out the possibility that our result is a spurious consequence of these effects. The dark component appears to be more concentrated than the most massive stars suggesting that it is likely composed of dark remnants segregated in the cluster core.Comment: 17 pages, 10 figures, accepted for publication by MNRA

    Asking gender questions

    Full text link

    A MODEST review

    Get PDF
    We present an account of the state of the art in the fields explored by the research community invested in 'Modeling and Observing DEnse STellar systems'. For this purpose, we take as a basis the activities of the MODEST-17 conference, which was held at Charles University, Prague, in September 2017. Reviewed topics include recent advances in fundamental stellar dynamics, numerical methods for the solution of the gravitational N-body problem, formation and evolution of young and old star clusters and galactic nuclei, their elusive stellar populations, planetary systems, and exotic compact objects, with timely attention to black holes of different classes of mass and their role as sources of gravitational waves. Such a breadth of topics reflects the growing role played by collisional stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next decade, many revolutionary instruments will enable the derivation of positions and velocities of individual stars in the Milky Way and its satellites and will detect signals from a range of astrophysical sources in different portions of the electromagnetic and gravitational spectrum, with an unprecedented sensitivity. On the one hand, this wealth of data will allow us to address a number of long-standing open questions in star cluster studies; on the other hand, many unexpected properties of these systems will come to light, stimulating further progress of our understanding of their formation and evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and Cosmology'. We are much grateful to the organisers of the MODEST-17 conference (Charles University, Prague, September 2017). We acknowledge the input provided by all MODEST-17 participants, and, more generally, by the members of the MODEST communit
    corecore