581 research outputs found

    The CLAS12 large area RICH detector

    Get PDF
    Abstract A large area RICH detector is being designed for the CLAS12 spectrometer as part of the 12 GeV upgrade program of the Jefferson Lab Experimental Hall-B. This detector is intended to provide excellent hadron identification from 3 GeV/ c up to momenta exceeding 8 GeV/ c and to be able to work at the very high design luminosity-up to 10 35 cm 2 s −1 . Detailed feasibility studies are presented for two types of radiators, aerogel and liquid C 6 F 14 freon, in conjunction with a highly segmented light detector in the visible wavelength range. The basic parameters of the RICH are outlined and the resulting performances, as defined by preliminary simulation studies, are reported

    The CLAS12 Software Framework and Event Reconstruction

    Get PDF
    We describe offline event reconstruction for the CEBAF Large Acceptance Spectrometer at 12 GeV (CLAS12), including an overview of the offline reconstruction framework and software tools, a description of the algorithms developed for the individual detector subsystems, and the overall approach for charged and neutral particle identification. We also present the scheme for data processing and the code management procedures

    A Method to Polarize Stored Antiprotons to a High Degree

    Get PDF
    Polarized antiprotons can be produced in a storage ring by spin--dependent interaction in a purely electron--polarized hydrogen gas target. The polarizing process is based on spin transfer from the polarized electrons of the target atoms to the orbiting antiprotons. After spin filtering for about two beam lifetimes at energies T≈40−170T\approx 40-170 MeV using a dedicated large acceptance ring, the antiproton beam polarization would reach P=0.2−0.4P=0.2-0.4. Polarized antiprotons would open new and unique research opportunities for spin--physics experiments in pˉp\bar{p}p interactions

    A bulk superconducting MgB2 cylinder for holding transversely polarized targets

    Get PDF
    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. A feasibility study with a prototype bulk MgB2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electron scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets

    Test of the CLAS12 RICH large scale prototype in the direct proximity focusing configuration

    Get PDF
    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c up to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Laboratory. The adopted solution foresees a novel hybrid optics design based on aerogel radiator, composite mirrors and high-packed and high-segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). We report here the results of the tests of a large scale prototype of the RICH detector performed with the hadron beam of the CERN T9 experimental hall for the direct detection configuration. The tests demonstrated that the proposed design provides the required pion-to-kaon rejection factor of 1:500 in the whole momentum range.Comment: 15 pages, 23 figures, to appear on EPJ

    Toward polarized antiprotons: Machine development for spin-filtering experiments

    Get PDF
    The paper describes the commissioning of the experimental equipment and the machine studies required for the first spin-filtering experiment with protons at a beam kinetic energy of 49.3 49.3\,MeV in COSY. The implementation of a low-β\beta insertion made it possible to achieve beam lifetimes of τb=8000 \tau_{\rm{b}}=8000\,s in the presence of a dense polarized hydrogen storage-cell target of areal density dt=(5.5±0.2)×1013 atoms/cm2d_{\rm t}=(5.5\pm 0.2)\times 10^{13}\,\mathrm{atoms/cm^{2}}. The developed techniques can be directly applied to antiproton machines and allow for the determination of the spin-dependent pˉp\bar{p}p cross sections via spin filtering
    • …
    corecore