865 research outputs found
A Method to Polarize Stored Antiprotons to a High Degree
Polarized antiprotons can be produced in a storage ring by spin--dependent
interaction in a purely electron--polarized hydrogen gas target. The polarizing
process is based on spin transfer from the polarized electrons of the target
atoms to the orbiting antiprotons. After spin filtering for about two beam
lifetimes at energies MeV using a dedicated large acceptance
ring, the antiproton beam polarization would reach . Polarized
antiprotons would open new and unique research opportunities for spin--physics
experiments in interactions
Test of the CLAS12 RICH large scale prototype in the direct proximity focusing configuration
A large area ring-imaging Cherenkov detector has been designed to provide
clean hadron identification capability in the momentum range from 3 GeV/c up to
8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron
beam accelerator facility of Jefferson Laboratory. The adopted solution
foresees a novel hybrid optics design based on aerogel radiator, composite
mirrors and high-packed and high-segmented photon detectors. Cherenkov light
will either be imaged directly (forward tracks) or after two mirror reflections
(large angle tracks). We report here the results of the tests of a large scale
prototype of the RICH detector performed with the hadron beam of the CERN T9
experimental hall for the direct detection configuration. The tests
demonstrated that the proposed design provides the required pion-to-kaon
rejection factor of 1:500 in the whole momentum range.Comment: 15 pages, 23 figures, to appear on EPJ
Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab
MeV-GeV dark matter (DM) is theoretically well motivated but remarkably
unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential
for a 1 m segmented plastic scintillator detector placed downstream of the
beam-dump at one of the high intensity JLab experimental Halls, receiving up to
10 electrons-on-target (EOT) in a one-year period. This experiment
(Beam-Dump eXperiment or BDX) is sensitive to DM-nucleon elastic scattering at
the level of a thousand counts per year, with very low threshold recoil
energies (1 MeV), and limited only by reducible cosmogenic backgrounds.
Sensitivity to DM-electron elastic scattering and/or inelastic DM would be
below 10 counts per year after requiring all electromagnetic showers in the
detector to exceed a few-hundred MeV, which dramatically reduces or altogether
eliminates all backgrounds. Detailed Monte Carlo simulations are in progress to
finalize the detector design and experimental set up. An existing 0.036 m
prototype based on the same technology will be used to validate simulations
with background rate estimates, driving the necessary RD towards an
optimized detector. The final detector design and experimental set up will be
presented in a full proposal to be submitted to the next JLab PAC. A fully
realized experiment would be sensitive to large regions of DM parameter space,
exceeding the discovery potential of existing and planned experiments by two
orders of magnitude in the MeV-GeV DM mass range.Comment: 28 pages, 17 figures, submitted to JLab PAC 4
Transverse-target-spin asymmetry in exclusive -meson electroproduction
Hard exclusive electroproduction of mesons is studied with the
HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and
electron beams off a transversely polarized hydrogen target. The amplitudes of
five azimuthal modulations of the single-spin asymmetry of the cross section
with respect to the transverse proton polarization are measured. They are
determined in the entire kinematic region as well as for two bins in photon
virtuality and momentum transfer to the nucleon. Also, a separation of
asymmetry amplitudes into longitudinal and transverse components is done. These
results are compared to a phenomenological model that includes the pion pole
contribution. Within this model, the data favor a positive
transition form factor.Comment: DESY Report 15-14
Measurement of the Spin-Dependence of the pbar-p Interaction at the AD-Ring
We propose to use an internal polarized hydrogen storage cell gas target in
the AD ring to determine for the first time the two total spin-dependent pbar-p
cross sections sigma_1 and sigma_2 at antiproton beam energies in the range
from 50 to 450 MeV. The data obtained are of interest by themselves for the
general theory of pbar-p interactions since they will provide a first
experimental constraint of the spin-spin dependence of the nucleon-antinucleon
potential in the energy range of interest. In addition, measurements of the
polarization buildup of stored antiprotons are required to define the optimum
parameters of a future, dedicated Antiproton Polarizer Ring (APR), intended to
feed a double-polarized asymmetric pbar-p collider with polarized antiprotons.
Such a machine has recently been proposed by the PAX collaboration for the new
Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt, Germany.
The availability of an intense stored beam of polarized antiprotons will
provide access to a wealth of single- and double-spin observables, thereby
opening a new window on QCD spin physics.Comment: 51 pages, 23 figures, proposal submitted to the SPS committee of CER
Measurement of K^0_e3 form factors
The semileptonic decay of the neutral K meson, KL -> pi e nu (Ke3), was used
to study the strangeness-changing weak interaction of hadrons. A sample of 5.6
million reconstructed events recorded by the NA48 experiment was used to
measure the Dalitz plot density. Admitting all possible Lorentz-covariant
couplings, the form factors for vector (f_+(q^2)), scalar (f_S) and tensor
(f_T) interactions were measured. The linear slope of the vector form factor
lambda_+ = 0.0284+-0.0007+-0.0013 and values for the ratios |f_S/f_+(0)| =
0.015^{+0.007}_{-0.010}+-0.012 and |f_T/f_+(0)| = 0.05^{+0.03}_{-0.04}+-0.03
were obtained. The values for f_S and f_T are consistent with zero. Assuming
only Vector-Axial vector couplings, lambda_+ = 0.0288+-0.0004+-0.0011 and a
good fit consistent with pure V-A couplings were obtained. Alternatively, a fit
to a dipole form factor yields a pole mass of M = 859+-18 MeV, consistent with
the K^*(892) mass.Comment: 16 pages, 7 figures. submitted to Phys. Lett.
- …
