2,836 research outputs found

    Mining the ESO WFI and INT WFC archives for known Near Earth Asteroids. Mega-Precovery software

    Full text link
    The ESO/MPG WFI and the INT WFC wide field archives comprising 330,000 images were mined to search for serendipitous encounters of known Near Earth Asteroids (NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 152 asteroids (44 PHAs and 108 other NEAs) were identified using the PRECOVERY software, their astrometry being measured on 761 images and sent to the Minor Planet Centre. Both recoveries and precoveries were reported, including prolonged orbital arcs for 18 precovered objects and 10 recoveries. We analyze all new opposition data by comparing the orbits fitted before and after including our contributions. We conclude the paper presenting Mega-Precovery, a new online service focused on data mining of many instrument archives simultaneously for one or a few given asteroids. A total of 28 instrument archives have been made available for mining using this tool, adding together about 2.5 million images forming the Mega-Archive.Comment: Accepted for publication in Astronomische Nachrichten (Sep 2012

    The strange physics of low frequency mirror mode turbulence in the high temperature plasma of the magnetosheath

    No full text
    International audienceMirror mode turbulence is the lowest frequency perpendicular magnetic excitation in magnetized plasma proposed already about half a century ago by Rudakov and Sagdeev (1958) and Chandrasekhar et al. (1958) from fluid theory. Its experimental verification required a relatively long time. It was early recognized that mirror modes for being excited require a transverse pressure (or temperature) anisotropy. In principle mirror modes are some version of slow mode waves. Fluid theory, however, does not give a correct physical picture of the mirror mode. The linear infinitesimally small amplitude physics is described correctly only by including the full kinetic theory and is modified by existing spatial gradients of the plasma parameters which attribute a small finite frequency to the mode. In addition, the mode is propagating only very slowly in plasma such that convective transport is the main cause of flow in it. As the lowest frequency mode it can be expected that mirror modes serve as one of the dominant energy inputs into plasma. This is however true only when the mode grows to large amplitude leaving the linear stage. At such low frequencies, on the other hand, quasilinear theory does not apply as a valid saturation mechanism. Probably the dominant processes are related to the generation of gradients in the plasma which serve as the cause of drift modes thus transferring energy to shorter wavelength propagating waves of higher nonzero frequency. This kind of theory has not yet been developed as it has not yet been understood why mirror modes in spite of their slow growth rate usually are of very large amplitudes indeed of the order of |B/B0|2~O(1). It is thus highly reasonable to assume that mirror modes are instrumental for the development of stationary turbulence in high temperature plasma. Moreover, since the magnetic field in mirror turbulence forms extended though slightly oblique magnetic bottles, low parallel energy particles can be trapped in mirror modes and redistribute energy (cf. for instance, Chisham et al. 1998). Such trapped electrons excite banded whistler wave emission known under the name of lion roars and indicating that the mirror modes contain a trapped particle component while leading to the splitting of particle distributions (see Baumjohann et al., 1999) into trapped and passing particles. The most amazing fact about mirror modes is, however, that they evolve in the practically fully collisionless regime of high temperature plasma where it is on thermodynamic reasons entirely impossible to expel any magnetic field from the plasma. The fact that magnetic fields are indeed locally extracted makes mirror modes similar to "superconducting" structures in matter as known only at extremely low temperatures. Of course, microscopic quantum effects do not play a role in mirror modes. However, it seems that all mirror structures have typical scales of the order of the ion inertial length which implies that mirrors evolve in a regime where the transverse ion and electron motions decouple. In this case the Hall kinetics comes into play. We estimate that in the marginally stationary nonlinear state of the evolution of mirror modes the modes become stretched along the magnetic field with k||=0 and that a small number the order of a few percent of the particle density is responsible only for the screening of the field from the interior of the mirror bubbles

    The Strange Physics of Low Frequency Mirror Mode Turbulence in the High Temperature Plasma of the Magnetosheath

    Get PDF
    Mirror mode turbulence is the lowest frequency perpendicular magnetic excitation in magnetized plasma proposed already about half a century ago by Rudakov and Sagdeev (1958) and Chandrasekhar et al. (1958) from fluid theory. Its experimental verification required a relatively long time. It was early recognized that mirror modes for being excited require a transverse pressure (or temperature) anisotropy. In principle mirror modes are some version of slow mode waves. Fluid theory, however, does not give a correct physical picture of the mirror mode. The linear infinitesimally small amplitude physics is described correctly only by including the full kinetic theory and is modified by existing spatial gradients of the plasma parameters which attribute a small finite frequency to the mode. In addition, the mode is propagating only very slowly in plasma such that convective transport is the main cause of flow in it. As the lowest frequency mode it can be expected that mirror modes serve as one of the dominant energy inputs into plasma. This is however true only when the mode grows to large amplitude leaving the linear stage. At such low frequencies, on the other hand, quasilinear theory does not apply as a valid saturation mechanism. Probably the dominant processes are related to the generation of gradients in the plasma which serve as the cause of drift modes thus transferring energy to shorter wavelength propagating waves of higher nonzero frequency. This kind of theory has not yet been developed as it has not yet been understood why mirror modes in spite of their slow growth rate usually are of very large amplitudes indeed of the order of |B/B0|2~O(1). It is thus highly reasonable to assume that mirror modes are instrumental for the development of stationary turbulence in high temperature plasma. Moreover, since the magnetic field in mirror turbulence forms extended though slightly oblique magnetic bottles, low parallel energy particles can be trapped in mirror modes and redistribute energy (cf. for instance, Chisham et al. 1998). Such trapped electrons excite banded whistler wave emission known under the name of lion roars and indicating that the mirror modes contain a trapped particle component while leading to the splitting of particle distributions (see Baumjohann et al., 1999) into trapped and passing particles. The most amazing fact about mirror modes is, however, that they evolve in the practically fully collisionless regime of high temperature plasma where it is on thermodynamic reasons entirely impossible to expel any magnetic field from the plasma. The fact that magnetic fields are indeed locally extracted makes mirror modes similar to superconducting structures in matter as known only at extremely low temperatures. Of course, microscopic quantum effects do not play a role in mirror modes. However, it seems that all mirror structures have typical scales of the order of the ion inertial length which implies that mirrors evolve in a regime where the transverse ion and electron motions decouple. In this case the Hall kinetics comes into play. We estimate that in the marginally stationary nonlinear state of the evolution of mirror modes the modes become stretched along the magnetic field with k||=0 and that a small number the order of a few percent of the particle density is responsible only for the screening of the field from the interior of the mirror bubbles

    Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars II: Finite Temperature Effects

    Full text link
    We present numerical calculations of the equation of state for dense matter in high magnetic fields, using a temperature dependent Thomas-Fermi theory with a magnetic field that takes all Landau levels into account. Free energies for atoms and matter are also calculated as well as profiles of the electron density as a function of distance from the atomic nucleus for representative values of the magnetic field strength, total matter density, and temperature. The Landau shell structure, which is so prominent in cold dense matter in high magnetic fields, is still clearly present at finite temperature as long as it is less than approximately one tenth of the cyclotron energy. This structure is reflected in an oscillatory behaviour of the equation of state and other thermodynamic properties of dense matter and hence also in profiles of the density and pressure as functions of depth in the surface layers of magnetic neutron stars. These oscillations are completely smoothed out by thermal effects at temperatures of the order of the cyclotron energy or higher.Comment: 37 pages, 17 figures included, submitted to Ap

    The strange physics of low frequency mirror mode turbulence in the high temperature plasma of the magnetosheath

    Get PDF
    Mirror mode turbulence is the lowest frequency perpendicular magnetic excitation in magnetized plasma proposed already about half a century ago by Rudakov and Sagdeev (1958) and Chandrasekhar et al. (1958) from fluid theory. Its experimental verification required a relatively long time. It was early recognized that mirror modes for being excited require a transverse pressure (or temperature) anisotropy. In principle mirror modes are some version of slow mode waves. Fluid theory, however, does not give a correct physical picture of the mirror mode. The linear infinitesimally small amplitude physics is described correctly only by including the full kinetic theory and is modified by existing spatial gradients of the plasma parameters which attribute a small finite frequency to the mode. In addition, the mode is propagating only very slowly in plasma such that convective transport is the main cause of flow in it. As the lowest frequency mode it can be expected that mirror modes serve as one of the dominant energy inputs into plasma. This is however true only when the mode grows to large amplitude leaving the linear stage. At such low frequencies, on the other hand, quasilinear theory does not apply as a valid saturation mechanism. Probably the dominant processes are related to the generation of gradients in the plasma which serve as the cause of drift modes thus transferring energy to shorter wavelength propagating waves of higher nonzero frequency. This kind of theory has not yet been developed as it has not yet been understood why mirror modes in spite of their slow growth rate usually are of very large amplitudes indeed of the order of |B/B<sub>0</sub>|<sup>2</sup>~O(1). It is thus highly reasonable to assume that mirror modes are instrumental for the development of stationary turbulence in high temperature plasma. Moreover, since the magnetic field in mirror turbulence forms extended though slightly oblique magnetic bottles, low parallel energy particles can be trapped in mirror modes and redistribute energy (cf. for instance, Chisham et al. 1998). Such trapped electrons excite banded whistler wave emission known under the name of lion roars and indicating that the mirror modes contain a trapped particle component while leading to the splitting of particle distributions (see Baumjohann et al., 1999) into trapped and passing particles. The most amazing fact about mirror modes is, however, that they evolve in the practically fully collisionless regime of high temperature plasma where it is on thermodynamic reasons entirely impossible to expel any magnetic field from the plasma. The fact that magnetic fields are indeed locally extracted makes mirror modes similar to 'superconducting' structures in matter as known only at extremely low temperatures. Of course, microscopic quantum effects do not play a role in mirror modes. However, it seems that all mirror structures have typical scales of the order of the ion inertial length which implies that mirrors evolve in a regime where the transverse ion and electron motions decouple. In this case the Hall kinetics comes into play. We estimate that in the marginally stationary nonlinear state of the evolution of mirror modes the modes become stretched along the magnetic field with k<sub>||</sub>=0 and that a small number the order of a few percent of the particle density is responsible only for the screening of the field from the interior of the mirror bubbles

    Cerebrospinal Fluid Biomarkers of Synaptic Dysfunction Are Altered in Parkinson's Disease and Related Disorders

    Get PDF
    Background: Synaptic dysfunction and degeneration are central contributors to the pathogenesis and progression of parkinsonian disorders. Therefore, identification and validation of biomarkers reflecting pathological synaptic alterations are greatly needed and could be used in prognostic assessment and to monitor treatment effects. Objective: To explore candidate biomarkers of synaptic dysfunction in Parkinson's disease (PD) and related disorders. Methods: Mass spectrometry was used to quantify 15 synaptic proteins in two clinical cerebrospinal fluid (CSF) cohorts, including PD (n1 = 51, n2 = 101), corticobasal degeneration (CBD) (n1 = 11, n2 = 3), progressive supranuclear palsy (PSP) (n1 = 22, n2 = 21), multiple system atrophy (MSA) (n1 = 31, n2 = 26), and healthy control (HC) (n1 = 48, n2 = 30) participants, as well as Alzheimer's disease (AD) (n2 = 23) patients in the second cohort. Results: Across both cohorts, lower levels of the neuronal pentraxins (NPTX; 1, 2, and receptor) were found in PD, MSA, and PSP, compared with HC. In MSA and PSP, lower neurogranin, AP2B1, and complexin-2 levels compared with HC were observed. In AD, levels of 14-3-3 zeta/delta, beta- and gamma-synuclein were higher compared with the parkinsonian disorders. Lower pentraxin levels in PD correlated with Mini-Mental State Exam scores and specific cognitive deficits (NPTX2; rho = 0.25–0.32, P < 0.05) and reduced dopaminergic pre-synaptic integrity as measured by DaTSCAN (NPTX2; rho = 0.29, P = 0.023). Additionally, lower levels were associated with the progression of postural imbalance and gait difficulty symptoms (All NPTX; β-estimate = −0.025 to −0.038, P < 0.05) and cognitive decline (NPTX2; β-estimate = 0.32, P = 0.021). Conclusions: These novel findings show different alterations of synaptic proteins in parkinsonian disorders compared with AD and HC. The neuronal pentraxins may serve as prognostic CSF biomarkers for both cognitive and motor symptom progression in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    The Stark effect in linear potentials

    Full text link
    We examine the Stark effect (the second-order shift in the energy spectrum due to an external constant force) for two 1-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z>0 and V(z) infinite for z<0) and the symmetric linear potential (given by V(z) = F|z|). We show how straightforward use of the most obvious properties of the Airy function solutions and simple Taylor expansions give closed form results for the Stark shifts in both systems. These exact results are then compared to other approximation techniques, such as perturbation theory and WKB methods. These expressions add to the small number of closed-form descriptions available for the Stark effect in model quantum mechanical systems.Comment: 15 pages. To appear in Eur. J. Phys. Needs Institute of Physics (iopart) style file
    corecore