87 research outputs found

    Multi-Species Feeding Association Dynamics Driven by a Large Generalist Predator

    Get PDF
    Multi-species feeding associations (MSFAs) are temporary communities of animals exploiting the same or co-occurrent resources. Their dynamics are species dependent, often creating competitive interactions, but they can also increase foraging efficiency and ultimately individual fitness. The foraging behaviors of some species can enhance prey capture by others, with different roles depending on the species present. Here, we use the Hauraki Gulf, New Zealand, as a model system to quantitatively characterize the principal types of MSFAs between 2011 and 2020. We determine the foraging associations of a large generalist predator, the Bryde’s whale, and how shifts in its prey preference change the dynamics between seabird competitors. Hierarchical clustering from influential predator groups identified three types of MSFAs. Two of mainly fish-feeding predators, one including and one lacking Bryde’s whales, and one involving (although not limited to) plankton-feeders associated with Bryde’s whales. Cluster frequencies featured significant temporal trends, whereas MSFA diversity and whale association rate showed no significant changes. Bryde’s whales’ increasing reliance on zooplankton highlights their foraging plasticity, with changes in cluster frequencies and resource competition related to this shift from fish to zooplankton. The role of Bryde’s whales varies from joiners and terminators in fish-feeding aggregations to initiators with plankton-feeding seabird associations, thereby changing the MSFA dynamics. MSFAs tend toward a diversity equilibrium, i.e., a maximum number of species involved before competitive effects exceed the benefits of interaction. Functional MSFAs where heterospecific interactions are important to foraging success can be affected by changing composition. Future work should focus on the behavioral interactions between key predators, prey availability and their effect on MSFAs

    Phylogenetically controlled life history trait meta-analysis in cetaceans reveals unexpected negative brain size and longevity correlation

    Get PDF
    Funding: ELC was supported by a Rutherford Discovery Fellowship from the Royal Society of New Zealand Te Apārangi and EG was supported by a University Research Fellowship from the Royal Society of London.The identification of patterns in trait evolution is essential to understand the interaction of evolutionary forces, and provides useful information for species management. Cetaceans are a phylogenetically well-resolved infraorder that exhibit distinct trait variation across behavioural, molecular and life history dimensions, yet few researchers have applied a meta-analytic or comparative approach to these traits. To understand cetacean trait evolution, we used a phylogenetic generalised least squares approach to examine the cognitive buffer hypothesis (CBH). A large brain should buffer individuals against environmental challenges through increasing survival rates, and a longer lifespan should buffer individuals against the cost of extended development for larger brains according to the CBH, leading to an expected positive correlation between brain size and lifespan. In contrast to this expectation, previously observed in taxa including primates, we found a negative correlation between brain size and lifespan in cetaceans. This suggests cetaceans experience selective pressures different from most other mammals in these traits but may be more similar to some social mammalian carnivores that display alloparenting. We also provide a comprehensive dataset to explore additional aspects of trait evolution but which would greatly benefit from studies on behavioural ecology across cetaceans and increased focus on data deficient species.Publisher PDFPeer reviewe

    Future Directions in Research on Bryde's Whales

    Get PDF
    One of the lesser known species of baleen whales, the Bryde's whale, also known as Eden's whale (Balaenoptera edeni edeni and B. edeni brydei), although hunted as part of a North Pacific Japanese research programme1, was not heavily exploited by commercial whaling and remains a data deficient species. Their taxonomic status is not fully resolved and they are often mistaken for other species leading to uncertainty about their true distribution, behavior and conservation status. Some populations are critically endangered, whilst others are small but have high genetic diversity suggesting wider connectivity. The species' unpredictable coastal and offshore global distribution throughout warm-temperate waters has led to populations with unknown genetic variation, and facing different threats. Few areas are well-studied, but each study reveals often contrasting movement patterns, foraging strategies, and vocal repertoires; there are considerable knowledge gaps for Bryde's whales. There are few Bryde's populations with abundance estimates but they typically number in the mid- to high-hundreds of individuals, with other populations small, <100 mature individuals, and exposed to high levels of anthropogenic impacts. Future research should focus on understanding the diversity within and between populations. Here, we suggest an integrative, comparative approach toward future work on Bryde's whales, including acoustic monitoring, trophic interactions, telemetry tools, understanding their novel behaviors, and resolving their species status. This will inform conservation management of this unusual species of whale vulnerable to anthropogenic impacts

    New Zealand blue whales: initial photo-identification of a little-known population

    Get PDF
    ABSTRACT Eighteen blue whales were photo-identified from coastal waters around the North and South Islands of New Zealand from 2004-2013 in five different months of the year. No photographic matches were found between locations. The photo-ID collection provides a foundation for future study on this little-known population. Fourteen of the photo-identifications were obtained in January and March 2013 during transits of the Antarctic Blue Whale Voyage from Nelson, NZ to Antarctica and return. This voyage also allowed for observations of the external morphology and behaviour of the blue whales encountered. Body length and proportion, head shape, body condition and skin condition were similar to Australian but not Antarctic blue whales. Feeding behaviour was observed off the South Island's west coast in January 2013 and strong evidence of feeding off the east coast in March 2013, the first this has been reported for these locations

    Migratory convergence facilitates cultural transmission of humpback whale song

    Get PDF
    E.C.G. was supported by a Royal Society Newton International Fellowship and a Royal Society University Research Fellowship. L.R. was supported by the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Cultural transmission of behaviour is important in a wide variety of vertebrate taxa from birds to humans. Vocal traditions and vocal learning provide a strong foundation for studying culture and its transmission in both humans and cetaceans. Male humpback whales (Megaptera novaeangliae) perform complex, culturally transmitted song displays that can change both evolutionarily (through accumulations of small changes) or revolutionarily (where a population rapidly adopts a novel song). The degree of coordination and conformity underlying song revolutions makes their study of particular interest. Acoustic contact on migratory routes may provide a mechanism for cultural revolutions of song, yet these areas of contact remain uncertain. Here, we compared songs recorded from the Kermadec Islands, a recently discovered migratory stopover, to multiple South Pacific wintering grounds. Similarities in song themes from the Kermadec Islands and multiple wintering locations (from New Caledonia across to the Cook Islands) suggest a location allowing cultural transmission of song eastward across the South Pacific, active song learning (hybrid songs) and the potential for cultural convergence after acoustic isolation at the wintering grounds. As with the correlations in humans between genes, communication and migration, the migration patterns of humpback whales are written into their songs.Publisher PDFPeer reviewe

    Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale

    Get PDF
    Humpback whales have a continually evolving vocal sexual display, or "song," that appears to undergo both evolutionary and "revolutionary" change. All males within a population adhere to the current content and arrangement of the song. Populations within an ocean basin share similarities in their songs; this sharing is complex as multiple variations of the song (song types) may be present within a region at any one time. To quantitatively investigate the similarity of song types, songs were compared at both the individual singer and population level using the Levenshtein distance technique and cluster analysis. The highly stereotyped sequences of themes from the songs of 211 individuals from populations within the western and central South Pacific region from 1998 through 2008 were grouped together based on the percentage of song similarity, and compared to qualitatively assigned song types. The analysis produced clusters of highly similar songs that agreed with previous qualitative assignments. Each cluster contained songs from multiple populations and years, confirming the eastward spread of song types and their progressive evolution through the study region. Quantifying song similarity and exchange will assist in understanding broader song dynamics and contribute to the use of vocal displays as population identifiers

    Runs of homozygosity in killer whale genomes provide a global record of demographic histories

    Get PDF
    Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (\u3c1 \u3eMb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (\u3e1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH \u3e1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression

    High-throughput sequencing of SARS-CoV-2 in wastewater provides insights into circulating variants

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) likely emerged from a zoonotic spill-over event and has led to a global pandemic. The public health response has been predominantly informed by surveillance of symptomatic individuals and contact tracing, with quarantine, and other preventive measures have then been applied to mitigate further spread. Non-traditional methods of surveillance such as genomic epidemiology and wastewater-based epidemiology (WBE) have also been leveraged during this pandemic. Genomic epidemiology uses high-throughput sequencing of SARS-CoV-2 genomes to inform local and international transmission events, as well as the diversity of circulating variants. WBE uses wastewater to analyse community spread, as it is known that SARS-CoV-2 is shed through bodily excretions. Since both symptomatic and asymptomatic individuals contribute to wastewater inputs, we hypothesized that the resultant pooled sample of population-wide excreta can provide a more comprehensive picture of SARS-CoV-2 genomic diversity circulating in a community than clinical testing and sequencing alone. In this study, we analysed 91 wastewater samples from 11 states in the USA, where the majority of samples represent Maricopa County, Arizona (USA). With the objective of assessing the viral diversity at a population scale, we undertook a single-nucleotide variant (SNV) analysis on data from 52 samples with \u3e90% SARS-CoV-2 genome coverage of sequence reads, and compared these SNVs with those detected in genomes sequenced from clinical patients. We identified 7973 SNVs, of which 548 were “novel” SNVs that had not yet been identified in the global clinical-derived data as of 17th June 2020 (the day after our last wastewater sampling date). However, between 17th of June 2020 and 20th November 2020, almost half of the novel SNVs have since been detected in clinical-derived data. Using the combination of SNVs present in each sample, we identified the more probable lineages present in that sample and compared them to lineages observed in North America prior to our sampling dates. The wastewater-derived SARS-CoV-2 sequence data indicates there were more lineages circulating across the sampled communities than represented in the clinical-derived data. Principal coordinate analyses identified patterns in population structure based on genetic variation within the sequenced samples, with clear trends associated with increased diversity likely due to a higher number of infected individuals relative to the sampling dates. We demonstrate that genetic correlation analysis combined with SNVs analysis using wastewater sampling can provide a comprehensive snapshot of the SARS-CoV-2 genetic population structure circulating within a community, which might not be observed if relying solely on clinical cases

    Runs of homozygosity in killer whale genomes provide a global record of demographic histories

    Get PDF
    Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH >1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression

    Biogeography in the deep : hierarchical population genomic structure of two beaked whale species

    Get PDF
    Funding for this research was provided by the Office of Naval Research, Award numbers N000141613017 and N000142112712. ABO was supported by a partial studentship from the University of St Andrews, School of Biology; OEG by the Marine Alliance for Science and Technology for Scotland (Scottish Funding Council grant HR09011); ELC by a Rutherford Discovery Fellowship from the Royal Society of New Zealand Te Aparangi; NAS by a Ramon y Cajal Fellowship from the Spanish Ministry of Innovation; MLM by the European Union’s Horizon 2020 Research and Innovation Programme (Marie SkƂodowska-Curie grant 801199); CR by the Marine Institute (Cetaceans on the Frontier) and the Irish Research Council; and MTO by the Hartmann Foundation.The deep sea is the largest ecosystem on Earth, yet little is known about the processes driving patterns of genetic diversity in its inhabitants. Here, we investigated the macro- and microevolutionary processes shaping genomic population structure and diversity in two poorly understood, globally distributed, deep-sea predators: Cuvier’s beaked whale (Ziphius cavirostris) and Blainville’s beaked whale (Mesoplodon densirostris). We used double-digest restriction associated DNA (ddRAD) and whole mitochondrial genome (mitogenome) sequencing to characterise genetic patterns using phylogenetic trees, cluster analysis, isolation-by-distance, genetic diversity and differentiation statistics. Single nucleotide polymorphisms (SNPs; Blainville’s n = 43 samples, SNPs=13988; Cuvier’s n = 123, SNPs= 30479) and mitogenomes (Blainville’s n = 27; Cuvier’s n = 35) revealed substantial hierarchical structure at a global scale. Both species display significant genetic structure between the Atlantic, Indo-Pacific and in Cuvier’s, the Mediterranean Sea. Within major ocean basins, clear differentiation is found between genetic clusters on the east and west sides of the North Atlantic, and some distinct patterns of structure in the Indo-Pacific and Southern Hemisphere. We infer that macroevolutionary processes shaping patterns of genetic diversity include biogeographical barriers, highlighting the importance of such barriers even to highly mobile, deep-diving taxa. The barriers likely differ between the species due to their thermal tolerances and evolutionary histories. On a microevolutionary scale, it seems likely that the balance between resident populations displaying site fidelity, and transient individuals facilitating gene flow, shapes patterns of connectivity and genetic drift in beaked whales. Based on these results, we propose management units to facilitate improved conservation measures for these elusive species.Publisher PDFPeer reviewe
    • 

    corecore