389 research outputs found
Neuroactivity screening of botanical extracts using microelectrode array (MEA) recordings
Toxicity testing of botanicals is challenging because of their chemical complexity and variability. Since botanicals may affect many different modes of action involved in neuronal function, we used microelectrode array (MEA) recordings of primary rat cortical cultures to screen 16 different botanical extracts for their effects on cell viability and neuronal network function in vitro. Our results demonstrate that extract materials (50 ÎĽg/mL) derived from goldenseal, milk thistle, tripterygium, and yohimbe decrease mitochondrial activity following 7 days exposure, indicative of cytotoxicity. Importantly, most botanical extracts alter neuronal network function following acute exposure. Extract materials (50 ÎĽg/mL) derived from aristolochia, ephedra, green tea, milk thistle, tripterygium, and usnea inhibit neuronal activity. Extracts of kava, kratom and yohimbe are particularly potent and induce a profound inhibition of neuronal activity at the low dose of 5 ÎĽg/mL. Extracts of blue cohosh, goldenseal and oleander cause intensification of the bursts. Aconite extract (5 ÎĽg/mL) evokes a clear hyperexcitation with a marked increase in the number of spikes and (network) bursts. The distinct activity patterns suggest that botanical extracts have diverse modes of action. Our combined data also highlight the applicability of MEA recordings for hazard identification and potency ranking of botanicals
New Approach Methodologies for the Endocrine Activity Toolbox: Environmental Assessment for Fish and Amphibians
Multiple in vivo test guidelines focusing on the estrogen, androgen, thyroid, and steroidogenesis pathways have been developed and validated for mammals, amphibians, or fish. However, these tests are resource-intensive and often use a large number of laboratory animals. Developing alternatives for in vivo tests is consistent with the replacement, reduction, and refinement principles for animal welfare considerations, which are supported by increasing mandates to move toward an “animal-free” testing paradigm worldwide. New approach methodologies (NAMs) hold great promise to identify molecular, cellular, and tissue changes that can be used to predict effects reliably and more efficiently at the individual level (and potentially on populations) while reducing the number of animals used in (eco)toxicological testing for endocrine disruption. In a collaborative effort, experts from government, academia, and industry met in 2020 to discuss the current challenges of testing for endocrine activity assessment for fish and amphibians. Continuing this cross-sector initiative, our review focuses on the current state of the science regarding the use of NAMs to identify chemical-induced endocrine effects. The present study highlights the challenges of using NAMs for safety assessment and what work is needed to reduce their uncertainties and increase their acceptance in regulatory processes. We have reviewed the current NAMs available for endocrine activity assessment including in silico, in vitro, and eleutheroembryo models. New approach methodologies can be integrated as part of a weight-of-evidence approach for hazard or risk assessment using the adverse outcome pathway framework. The development and utilization of NAMs not only allows for replacement, reduction, and refinement of animal testing but can also provide robust and fit-for-purpose methods to identify chemicals acting via endocrine mechanisms.publishedVersio
Chimeric Rnas Reveal Putative Neoantigen Peptides for Developing Tumor Vaccines for Breast Cancer
INTRODUCTION: We present here a strategy to identify immunogenic neoantigen candidates from unique amino acid sequences at the junctions of fusion proteins which can serve as targets in the development of tumor vaccines for the treatment of breastcancer.
METHOD: We mined the sequence reads of breast tumor tissue that are usually discarded as discordant paired-end reads and discovered cancer specific fusion transcripts using tissue from cancer free controls as reference. Binding affinity predictions of novel peptide sequences crossing the fusion junction were analyzed by the MHC Class I binding predictor, MHCnuggets. CD8+ T cell responses against the 15 peptides were assessed through in vitro Enzyme Linked Immunospot (ELISpot).
RESULTS: We uncovered 20 novel fusion transcripts from 75 breast tumors of 3 subtypes: TNBC, HER2+, and HR+. Of these, the NSFP1-LRRC37A2 fusion transcript was selected for further study. The 3833 bp chimeric RNA predicted by the consensus fusion junction sequence is consistent with a read-through transcription of the 5\u27-gene NSFP1-Pseudo gene NSFP1 (NSFtruncation at exon 12/13) followed by trans-splicing to connect withLRRC37A2 located immediately 3\u27 through exon 1/2. A total of 15 different 8-mer neoantigen peptides discovered from the NSFP1 and LRRC37A2 truncations were predicted to bind to a total of 35 unique MHC class I alleles with a binding affinity of IC50
CONCLUSION: Our data provides a framework to identify immunogenic neoantigen candidates from fusion transcripts and suggests a potential vaccine strategy to target the immunogenic neopeptides in patients with tumors carrying the NSFP1-LRRC37A2 fusion
Morphologic Blooming in Breast MRI as a Characterization of Margin for Discriminating Benign from Malignant Lesions
Develop a fully automated, objective method for evaluating morphology on breast MR and evaluate effectiveness of the new morphological method for detecting breast cancers
Sleep Outcomes With Cognitive Behavioral Therapy for Insomnia Are Similar Between Older Adults With Low vs. High Self-Reported Physical Activity
We examined whether baseline self-reported physical activity is associated with the efficacy of cognitive behavioral therapy for insomnia (CBT-I) in older veterans. Community-dwelling veterans aged 60 years and older with insomnia received CBT-I in a randomized controlled trial. Participants who received active treatment were divided into low and high physical activity based on self-report. Sleep outcomes were measured by sleep diary, questionnaire and wrist actigraphy; collected at baseline, post-treatment, 6-month and 12-month follow-up. Mixed-effects models compared differences between physical activity groups in change in sleep outcome from baseline to each follow-up, and equivalence tests examined if physical activity groups were clinically equal. There were no significant differences in sleep outcomes between physical activity groups. Equivalence tests suggested possible equality in physical activity groups for five of seven sleep outcomes. Efficacy of CBT-I in older veterans was not associated with self-reported physical activity at baseline. Older adults with insomnia who report low levels of physical activity can benefit from CBT-I
Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis
Genetically modified mice are indispensable for establishing the roles of platelets in arterial thrombosis and hemostasis. Microfluidics assays using anticoagulated whole blood are commonly used as integrative proxy tests for platelet function in mice. In the present study, we quantified the changes in collagen-dependent thrombus formation for 38 different strains of (genetically) modified mice, all measured with the same microfluidics chamber. The mice included were deficient in platelet receptors, protein kinases or phosphatases, small GTPases or other signaling or scaffold proteins. By standardized re-analysis of high-resolution microscopic images, detailed information was obtained on altered platelet adhesion, aggregation and/or activation. For a subset of 11 mouse strains, these platelet functions were further evaluated in rhodocytin- and laminin-dependent thrombus formation, thus allowing a comparison of glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2) and integrin alpha(6)beta(1) pathways. High homogeneity was found between wild-type mice datasets concerning adhesion and aggregation parameters. Quantitative comparison for the 38 modified mouse strains resulted in a matrix visualizing the impact of the respective (genetic) deficiency on thrombus formation with detailed insight into the type and extent of altered thrombus signatures. Network analysis revealed strong clusters of genes involved in GPVI signaling and Ca2+ homeostasis. The majority of mice demonstrating an antithrombotic phenotype in vivo displayed with a larger or smaller reduction in multi-parameter analysis of collagen-dependent thrombus formation in vitro. Remarkably, in only approximately half of the mouse strains that displayed reduced arterial thrombosis in vivo, this was accompanied by impaired hemostasis. This was also reflected by comparing in vitro thrombus formation (by microfluidics) with alterations in in vivo bleeding time. In conclusion, the presently developed multi-parameter analysis of thrombus formation using microfluidics can be used to: (i) determine the severity of platelet abnormalities;(ii) distinguish between altered platelet adhesion, aggregation and activation;and (iii) elucidate both collagen and non-collagen dependent alterations of thrombus formation. This approach may thereby aid in the better understanding and better assessment of genetic variation that affect in vivo arterial thrombosis and hemostasis
Recommended from our members
Chemoinformatic-Guided Engineering of Polyketide Synthases.
Polyketide synthase (PKS) engineering is an attractive method to generate new molecules such as commodity, fine and specialty chemicals. A significant challenge is re-engineering a partially reductive PKS module to produce a saturated β-carbon through a reductive loop (RL) exchange. In this work, we sought to establish that chemoinformatics, a field traditionally used in drug discovery, offers a viable strategy for RL exchanges. We first introduced a set of donor RLs of diverse genetic origin and chemical substrates into the first extension module of the lipomycin PKS (LipPKS1). Product titers of these engineered unimodular PKSs correlated with chemical structure similarity between the substrate of the donor RLs and recipient LipPKS1, reaching a titer of 165 mg/L of short-chain fatty acids produced by the host Streptomyces albus J1074. Expanding this method to larger intermediates that require bimodular communication, we introduced RLs of divergent chemosimilarity into LipPKS2 and determined triketide lactone production. Collectively, we observed a statistically significant correlation between atom pair chemosimilarity and production, establishing a new chemoinformatic method that may aid in the engineering of PKSs to produce desired, unnatural products
1993-94 Progress Report
The 1993 edition of the Progress Reports was prepared for the Maine Wild Blueberry Commission and the University of Maine Wild Blueberry Advisory Committee by researchers at the University of Maine, Orono. Projects in this report include:
1. Effects of irrigation on lowbush blueberry yield and quality
2. The Economics of investigating irrigation for lowbush blueberries
3. Phosphorus dose/response curve
4. Winter injury protection by potassium
5. Multiple cropping of wild stands
6. Effect of Boron and Calcium on lowbush blueberry fruit set and yield
7. Comparison of N, NP, and NPK fertilizers to correct nitrogen and phosphorus deficiency
8. Determination of pesticide residue levels in freshly harvested and processed lowbush blueberries
9. Effects of calcium salts and citric acid on the quality of canned lowbush blueberries
10. Investigation of preprocess changes (chemical, microbiological, and/or physical) that can lead to the development of a simple and inexpensive method to measure preprocess berry spoilage
11. The effect of fertilization and irrigation in blueberry fruit quality
12. Pollination Ecology of lowbush blueberry in Maine
13. Current importance of insects in lowbush blueberry fields
14. Application of heat as a method of controlling secondary pest insects on lowbush blueberry: a feasibility study
15. Control of blueberry maggot
16. Control of secondary blueberry pest insects
17. Biology and action thresholds of secondary blueberry pest insects
18. Cold-hardiness of native lowbush blueberry
19. Design, fabrication, and testing of an experimental sterilizer for blueberry fields
20. Canned Product Quality--Heat-resistant molds
21. Sanitation for disease control
22. Evaluation of Velpar® impregnated DAP and Pronone® for weed control
23. Evaluation of postemergence applications of tribenuron methyl for bunchberry control
24. Evaluation of postemergence applications of a tank mix of tribenuron methyl and hexazinone for bunchberry control
25. Thresholds of dogbane and bracken fem by mechanical and chemical control in lowbush blueberry fields
26. Effect of time of application of clopyralid for control of vetch and effect on flowering in lowbush blueberries
27. Effect of time of fall pruning on growth and productivity of blueberries and evaluation of infrared burner to prune blueberries
28. Evaluation of infrared burner for selective seedling weed control
29. Evaluation of pressurized rope wick Wick Master wiper for treating weeds growing above lowbush blueberries
30. Blueberry Extension Education Program Base
31. Blueberry ICM program for Hancock County
32. Composting blueberry processing waste
33. Hexazinone ground water survey
34. Investigations of Lowbush Blueberry Fruit bud Cold-hardiness
35. Design, Fabrication, and Testing of an Experimental Sterilizer for Blueberry Field
JAK-STAT and AKT pathway-coupled genes in erythroid progenitor cells through ontogeny
Background: It has been reported that the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway regulates erythropoietin (EPO)-induced survival, proliferation, and maturation of early erythroid progenitors. Erythroid cell proliferation and survival have also been related to activation of the JAK-STAT pathway. The goal of this study was to observe the function of EPO activation of JAK-STAT and PI3K/AKT pathways in the development of erythroid progenitors from hematopoietic CD34(+) progenitor cells, as well as to distinguish early EPO target genes in human erythroid progenitors during ontogeny. Methods: Hematopoietic CD34(+) progenitor cells, isolated from fetal and adult hematopoietic tissues, were differentiated into erythroid progenitor cells. We have used microarray analysis to examine JAK-STAT and PI3K/AKT related genes, as well as broad gene expression modulation in these human erythroid progenitor cells. Results: In microarray studies, a total of 1755 genes were expressed in fetal liver, 3844 in cord blood, 1770 in adult bone marrow, and 1325 genes in peripheral blood-derived erythroid progenitor cells. The erythroid progenitor cells shared 1011 common genes. Using the Ingenuity Pathways Analysis software, we evaluated the network pathways of genes linked to hematological system development, cellular growth and proliferation. The KITLG, EPO, GATA1, PIM1 and STAT3 genes represent the major connection points in the hematological system development linked genes. Some JAK-STAT signaling pathway-linked genes were steadily upregulated throughout ontogeny (PIM1, SOCS2, MYC, PTPN11), while others were downregulated (PTPN6, PIAS, SPRED2). In addition, some JAK-STAT pathway related genes are differentially expressed only in some stages of ontogeny (STATs, GRB2, CREBB). Beside the continuously upregulated (AKT1, PPP2CA, CHUK, NFKB1) and downregulated (FOXO1, PDPK1, PIK3CG) genes in the PI3K-AKT signaling pathway, we also observed intermittently regulated gene expression (NFKBIA, YWHAH). Conclusions: This broad overview of gene expression in erythropoiesis revealed transcription factors differentially expressed in some stages of ontogenesis. Finally, our results show that EPO-mediated proliferation and survival of erythroid progenitors occurs mainly through modulation of JAK-STAT pathway associated STATs, GRB2 and PIK3 genes, as well as AKT pathway-coupled NFKBIA and YWHAH genes
- …