132 research outputs found

    Case-Control Analysis of SNPs in GLUT4, RBP4 and STRA6: Association of SNPs in STRA6 with Type 2 Diabetes in a South Indian Population

    Get PDF
    BACKGROUND: The inverse relationship between GLUT4 and RBP4 expression is known to play a role in the pathogenesis of type 2 diabetes. Elevated levels of RBP4 were shown to cause insulin resistance in muscles and liver. Identification of STRA6 as a cell surface receptor for RBP4 provides further link in this axis and hence we analyzed SNPs in these three genes for association with type 2 diabetes in a South Indian population. METHODOLOGY/PRINCIPAL FINDINGS: Selected SNPs in the three genes were analyzed in a total of 2002 individuals belonging to Dravidian ethnicity, South India, by Tetra Primer ARMS PCR or RFLP PCR. Allele frequencies and genotype distribution were calculated in cases and controls and were analyzed for association by Chi-squared test and Logistic regression. Haplotype analysis was carried out for each gene by including all the markers in a single block. We observed a significant association of three SNPs, rs974456, rs736118, and rs4886578 in STRA6 with type 2 diabetes (P = 0.001, OR 0.79[0.69-0.91], P = 0.003, OR 0.81[0.71-0.93], and P = 0.001, OR 0.74[0.62-0.89] respectively). None of the SNPs in RBP4 and GLUT4 showed any association with type 2 diabetes. Haplotype analysis revealed that two common haplotypes H1 (111, P = 0.001, OR 1.23[1.08-1.40]) and H2 (222, P = 0.002 OR 0.73[0.59-0.89]) in STRA6, H6 (2121, P = 0.006, OR 1.69[1.51-2.48]) in RBP4 and H4 (2121, P = 0.01 OR 1.41[1.07-1.85]) in GLUT4 were associated with type 2 diabetes. CONCLUSION: SNPs in STRA6, gene coding the cell surface receptor for RBP4, were significantly associated with type 2 diabetes and further genetic and functional studies are required to understand and ascertain its role in the manifestation of type 2 diabetes

    The Transcriptional Response in Human Umbilical Vein Endothelial Cells Exposed to Insulin: A Dynamic Gene Expression Approach

    Get PDF
    BACKGROUND: In diabetes chronic hyperinsulinemia contributes to the instability of the atherosclerotic plaque and stimulates cellular proliferation through the activation of the MAP kinases, which in turn regulate cellular proliferation. However, it is not known whether insulin itself could increase the transcription of specific genes for cellular proliferation in the endothelium. Hence, the characterization of transcriptional modifications in endothelium is an important step for a better understanding of the mechanism of insulin action and the relationship between endothelial cell dysfunction and insulin resistance. METHODOLOGY AND PRINCIPAL FINDINGS: The transcriptional response of endothelial cells in the 440 minutes following insulin stimulation was monitored using microarrays and compared to a control condition. About 1700 genes were selected as differentially expressed based on their treated minus control profile, thus allowing the detection of even small but systematic changes in gene expression. Genes were clustered in 7 groups according to their time expression profile and classified into 15 functional categories that can support the biological effects of insulin, based on Gene Ontology enrichment analysis. In terms of endothelial function, the most prominent processes affected were NADH dehydrogenase activity, N-terminal myristoylation domain binding, nitric-oxide synthase regulator activity and growth factor binding. Pathway-based enrichment analysis revealed "Electron Transport Chain" significantly enriched. Results were validated on genes belonging to "Electron Transport Chain" pathway, using quantitative RT-PCR. CONCLUSIONS: As far as we know, this is the first systematic study in the literature monitoring transcriptional response to insulin in endothelial cells, in a time series microarray experiment. Since chronic hyperinsulinemia contributes to the instability of the atherosclerotic plaque and stimulates cellular proliferation, some of the genes identified in the present work are potential novel candidates in diabetes complications related to endothelial dysfunction

    Born to be green: new insights into the economics and management of green entrepreneurship

    Get PDF
    While the number of green start-ups has steadily increased around the world in response to the environmental problems demanding immediate solutions, there are several unresolved questions on the behaviour and performance of such ventures. The papers in this special issue shed light on these issues by underscoring the role of several factors, such as industry life cycles, knowledge spillovers, institutions, and availability of external finance, in shaping decision-making and firm behaviour in green start-ups. This paper highlights the state-of-the art developments in the literature, discusses the key contributions of the papers put together in this special issue and presents a future research agenda for scholars interested in green entrepreneurship

    A Functional Variant of the Dimethylarginine Dimethylaminohydrolase-2 Gene Is Associated with Insulin Sensitivity

    Get PDF
    Background: Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide synthase, which was associated with insulin resistance. Dimethylarginine dimethylaminohydrolase (DDAH) is the major determinant of plasma ADMA. Examining data from the DIAGRAM+ (Diabetes Genetics Replication And Meta-analysis), we identified a variant (rs9267551) in the DDAH2 gene nominally associated with type 2 diabetes (P =3610 25). Methodology/Principal Findings: initially, we assessed the functional impact of rs9267551 in human endothelial cells (HUVECs), observing that the G allele had a lower transcriptional activity resulting in reduced expression of DDAH2 and decreased NO production in primary HUVECs naturally carrying it. We then proceeded to investigate whether this variant is associated with insulin sensitivity in vivo. To this end, two cohorts of nondiabetic subjects of European ancestry were studied. In sample 1 (n = 958) insulin sensitivity was determined by the insulin sensitivity index (ISI), while in sample 2 (n = 527) it was measured with a euglycemic-hyperinsulinemic clamp. In sample 1, carriers of the GG genotype had lower ISI than carriers of the C allele (67633 vs.79644; P = 0.003 after adjusting for age, gender, and BMI). ADMA levels were higher in subjects carrying the GG genotype than in carriers of the C allele (0.6860.14 vs. 0.5760.14 mmol/l; P = 0.04). In sample 2, glucose disposal was lower in GG carriers as compared with C carriers (9.364.1 vs. 11.064.2 mg6Kg 21 free fat mass6min 21; P = 0.009)
    corecore