26 research outputs found

    ALMA CO(3-2) Observations of Star-Forming Filaments in a Gas-Poor Dwarf Spheroidal Galaxy

    Full text link
    We report ALMA observations of 12^{12}CO(3-2) and 13^{13}CO(3-2) in the gas-poor dwarf galaxy NGC 5253. These 0.3"(5.5 pc) resolution images reveal small, dense molecular gas clouds that are located in kinematically distinct, extended filaments. Some of the filaments appear to be falling into the galaxy and may be fueling its current star formation. The most intense CO(3-2) emission comes from the central ∼\sim100 pc region centered on the luminous radio-infrared HII region known as the supernebula. The CO(3-2) clumps within the starburst region are anti-correlated with Hα\alpha on ∼\sim5 pc scales, but are well-correlated with radio free-free emission. Cloud D1, which enshrouds the supernebula, has a high 12^{12}CO/13^{13}CO ratio, as does another cloud within the central 100 pc starburst region, possibly because the clouds are hot. CO(3-2) emission alone does not allow determination of cloud masses as molecular gas temperature and column density are degenerate at the observed brightness, unless combined with other lines such as 13^{13}CO.Comment: 7 pages, 5 figures, Accepted to Ap

    Ionized Gas Motions and the Structure of Feedback Near a Forming Globular Cluster in NGC 5253

    Full text link
    We observed Brackett α\alpha 4.05μ\mum emission towards the supernebula in NGC 5253 with NIRSPEC on Keck II in adaptive optics mode, NIRSPAO, to probe feedback from its exciting embedded super star cluster (SSC). NIRSPEC's Slit-Viewing Camera was simultaneously used to image the K-band continuum at ∼\sim0.1′′0.1'' resolution. We register the IR continuum with HST imaging, and find that the visible clusters are offset from the K-band peak, which coincides with the Br α\alpha peak of the supernebula and its associated molecular cloud. The spectra of the supernebula exhibit Br α\alpha emission with a strong, narrow core. The linewidths are 65-76 km s−1^{-1}, FWHM, comparable to those around individual ultra-compact HII regions within our Galaxy. A weak, broad (FWHM≃\simeq150-175 km s−1^{-1}) component is detected on the base of the line, which could trace a population of sources with high-velocity winds. The core velocity of Br α\alpha emission shifts by +13 km s−1^{-1} from NE to SW across the supernebula, possibly indicating a bipolar outflow from an embedded object, or linked to a foreground redshifted gas filament. The results can be explained if the supernebula comprises thousands of ionized wind regions around individual massive stars, stalled in their expansion due to critical radiative cooling and unable to merge to drive a coherent cluster wind. Based on the absence of an outflow with large mass loss, we conclude that feedback is currently ineffective at dispersing gas, and the SSC retains enriched material out of which it may continue to form stars.Comment: 24 pages, 9 figure

    Consiglio_Poster Slide

    No full text

    Consiglio_Gas_and_Star_Formation_in_NGC_2403

    No full text
    corecore