30 research outputs found

    EPIC Modeling of Soil Organic Carbon Sequestration in Croplands of Iowa

    Get PDF
    Depending on management, soil organic carbon (SOC) is a potential source or sink for atmospheric CO2. We used the EPIC model to study impacts of soil and crop management on SOC in corn (Zea mays L.) and soybean (Glycine max L. Merr.) croplands of Iowa. The National Agricultural Statistics Service crops classification maps were used to identify corn–soybean areas. Soil properties were obtained from a combination of SSURGO and STATSGO databases. Daily weather variables were obtained from first order meteorological stations in Iowa and neighboring states. Data on crop management, fertilizer application and tillage were obtained from publicly available databases maintained by the NRCS, USDA-Economic Research Service (ERS), and Conservation Technology Information Center. The EPIC model accurately simulated state averages of crop yields during 1970–2005 (R2 = 0.87). Simulated SOC explained 75% of the variation in measured SOC. With current trends in conservation tillage adoption, total stock of SOC (0–20 cm) is predicted to reach 506 Tg by 2019, representing an increase of 28 Tg with respect to 1980. In contrast, when the whole soil profile was considered, EPIC estimated a decrease of SOC stocks with time, from 1835 Tg in 1980 to 1771 Tg in 2019. Hence, soil depth considered for calculations is an important factor that needs further investigation. Soil organic C sequestration rates (0–20 cm) were estimated at 0.50 to 0.63 Mg ha−1 yr−1 depending on climate and soil conditions. Overall, combining land use maps with EPIC proved valid for predicting impacts of management practices on SOC. However, more data on spatial and temporal variation in SOC are needed to improve model calibration and validation

    Short-Term Soil Responses to Late-Seeded Cover Crops in a Semi-Arid Environment

    Get PDF
    Cover crops can expand ecosystem services, though sound management recommendations for their use within semiarid cropping systems is currently constrained by a lack of information. Th is study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till management, with particular emphasis on soil attributes. Short-term effects of late-summer seeded cover crops on soil water, available N, nearsurface soil quality, and residue cover were investigated during three consecutive years on the Area IV Soil Conservation Districts Research Farm near Mandan, ND. Mean aboveground cover crop biomass was highly variable across years (1430, 96, and 937 kg ha–1 in 2008, 2009, and 2010, respectively), and was strongly affected by precipitation received within 14 d following cover crop seeding. During years with appreciable biomass production (2008 and 2010), cover crops significantly reduced available N in the 0.9-m depth the following spring (P = 0.0291 and 0.0464, respectively). Cover crop effects on soil water were subtle, and no differences in soil water were found between cover crop treatments and a no cover crop control before seeding cash crops the following spring. Late-summer seeded cover crops did not affect near-surface soil properties or soil coverage by residue. Soil responses to late-summer seeded cover crops did not diff er between cover crop mixtures and monocultures. Late-summer seeded cover crops may enhance ecosystem services provided by semiarid cropping systems through biomass production and N conservation, though achieving these benefits in a consistent manner appears dependent on timely precipitation following cover crop seeding
    corecore