313 research outputs found

    Growth of monolayer graphene on 8deg off-axis 4H-SiC (000-1) substrates with application to quantum transport devices

    Full text link
    Using high temperature annealing conditions with a graphite cap covering the C-face of an 8deg off-axis 4H-SiC sample, large and homogeneous single epitaxial graphene layers have been grown. Raman spectroscopy shows evidence of the almost free-standing character of these monolayer graphene sheets, which was confirmed by magneto-transport measurements. We find a moderate p-type doping, high carrier mobility and half integer Quantum Hall effect typical of high quality graphene samples. This opens the way to a fully compatible integration of graphene with SiC devices on the wafers that constitute the standard in today's SiC industry.Comment: 11 pages, 4 figures , Submitted in AP

    Quantum Hall resistance standards from graphene grown by chemical vapor deposition on silicon carbide

    Full text link
    Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10−910^{-9} in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by sublimation of Si, under higher magnetic fields. Here, we report on a device made of graphene grown by chemical vapour deposition on SiC which demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4 K. This is explained by a quantum Hall effect with low dissipation, resulting from strongly localized bulk states at the magnetic length scale, over a wide magnetic field range. Our results show that graphene-based QHRS can replace their GaAs counterparts by operating in as-convenient cryomagnetic conditions, but over an extended magnetic field range. They rely on a promising hybrid and scalable growth method and a fabrication process achieving low-electron density devices.Comment: 12 pages, 8 figure

    Room Temperature Coherent and Voltage Tunable Terahertz Emission from Nanometer-Sized Field Effect Transistors

    Full text link
    We report on reflective electro-optic sampling measurements of TeraHertz emission from nanometer-gate-length InGaAs-based high electron mobility transistors. The room temperature coherent gate-voltage tunable emission is demonstrated. We establish that the physical mechanism of the coherent TeraHertz emission is related to the plasma waves driven by simultaneous current and optical excitation. A significant shift of the plasma frequency and the narrowing of the emission with increasing channel's current are observed and explained as due to the increase of the carriers density and drift velocity.Comment: 3 figure

    Temperature-driven single-valley Dirac fermions in HgTe quantum wells

    Full text link
    We report on temperature-dependent magnetospectroscopy of two HgTe/CdHgTe quantum wells below and above the critical well thickness dcd_c. Our results, obtained in magnetic fields up to 16 T and temperature range from 2 K to 150 K, clearly indicate a change of the band-gap energy with temperature. The quantum well wider than dcd_c evidences a temperature-driven transition from topological insulator to semiconductor phases. At the critical temperature of 90 K, the merging of inter- and intra-band transitions in weak magnetic fields clearly specifies the formation of gapless state, revealing the appearance of single-valley massless Dirac fermions with velocity of 5.6×1055.6\times10^5 m×\timess−1^{-1}. For both quantum wells, the energies extracted from experimental data are in good agreement with calculations on the basis of the 8-band Kane Hamiltonian with temperature-dependent parameters.Comment: 5 pages, 3 figures and Supplemental Materials (4 pages

    From strike-slip to reverse reactivation : the Crevillente Fault System and seismicity in the Bullas-Mula area (Betic Cordillera, SE Spain)

    Get PDF
    Several major N80ºE faults occur in the Bullas-Mula area (SE Spain). These faults and the numerous thrust slices of the Sierra de Ricote can be related to the movements of the Crevillente (or Cadiz-Alicante) fault system, which causes the westward displacement of the Betic Internal Zone and part of the External Zone. These faults moved with dextral strike-slip from Late Burdigalian to Early Tortonian. From this time on, the s1 position changed from a WNW-ESE direction to approximately N-S, giving rise to movements with a new reverse character. The focal mechanisms of the 1999 Mula earthquakes indicate a N80ºE nodal plane, and their pressure axes also coincide with the s1 direction existing from the Late Miocene and deduced from mesotectonic analysis at many points of the region. There is also good coincidence between their epicentral position and the fault traces. The Bullas earthquakes that occurred in 2002 are not directly related to the Crevillente faults, although their stress-pressure axes coincide with the s1 direction reported there
    • …
    corecore