3,731 research outputs found
Bayesian multiscale deconvolution applied to gamma-ray spectroscopy
A common task in gamma-ray astronomy is to extract spectral information, such as model constraints and incident photon spectrum estimates, given the measured energy deposited in a detector and the detector response. This is the classic problem of spectral “deconvolution” or spectral inversion. The methods of forward folding (i.e., parameter fitting) and maximum entropy “deconvolution” (i.e., estimating independent input photon rates for each individual energy bin) have been used successfully for gamma-ray solar flares (e.g., Rank, 1997; Share and Murphy, 1995). These methods have worked well under certain conditions but there are situations were they don’t apply. These are: 1) when no reasonable model (e.g., fewer parameters than data bins) is yet known, for forward folding; 2) when one expects a mixture of broad and narrow features (e.g., solar flares), for the maximum entropy method; and 3) low count rates and low signal-to-noise, for both. Low count rates are a problem because these methods (as they have been implemented) assume Gaussian statistics but Poisson are applicable. Background subtraction techniques often lead to negative count rates. For Poisson data the Maximum Likelihood Estimator (MLE) with a Poisson likelihood is appropriate. Without a regularization term, trying to estimate the “true” individual input photon rates per bin can be an ill-posed problem, even without including both broad and narrow features in the spectrum (i.e., amultiscale approach). One way to implement this regularization is through the use of a suitable Bayesian prior. Nowak and Kolaczyk (1999) have developed a fast, robust, technique using a Bayesian multiscale framework that addresses these problems with added algorithmic advantages. We outline this new approach and demonstrate its use with time resolved solar flare gamma-ray spectroscopy
Energetic proton spectra in the 11 June 1991 solar flare
The June 11, 1991 gamma-ray flare seen by the Compton Gamma-ray Observatory (CGRO) displays several features that make it a dynamic and rich event. It is a member of a class of long duration gamma-ray events with both 2.223 MeV and greater than 8 MeV emission for hours after the impulsive phase. It also contains an inter-phase between the impulsive and extended phases that presents a challenge to the standard gamma-ray line (GRL) flare picture. This phase has strong 2.223 MeV emission and relatively weak 4.44 MeV emission indicative of a very hard parent proton spectrum. However, this would indicate emission greater than 8 MeV, which is absent from this period. We present the application of new spectroscopy techniques to this phase of the flare in order to present a reasonable explanation for this seemly inconsistent picture
Energetic proton spectra in the 11 June 1991 solar flare
We have studied a subset of the 11 June 1991 solar flare γ-ray data that we believe arise from soft proton or ion spectra. Using data from the COMPTEL instrument on the Compton Observatory we discuss the gamma-ray intensities at 2.223 MeV, 4–7 MeV, and 8–30 MeV in terms of the parent proton spectrum responsible for the emission
Gamma ray measurements of the 1991 November 15 solar flare
The 1991 November 15 X1.5 flare was a well observed solar event. Comprehensive data from ground-based observatories and spacecraft provide the basis for a contextual interpretation of gamma-ray spectra from the Compton Gamma Ray Observatory (CGRO). In particular, spectral, spatial, and temporal data at several energies are necessary to understand the particle dynamics and the acceleration mechanism(s) within this flare. X-ray images, radio, Ca XIX data and magnetograms provide morphological information on the acceleration region [4,5], while gamma-ray spectral data provide information on the parent ion spectrum. Furthermore, time profiles in hard X-rays and gamma-rays provide valuable information on temporal characteristics of the energetic particles. We report the results of our analysis of the evolution of this flare as a function of energy (∼25 keV–2.5 MeV) and time. These results, together with other high energy data (e.g. from experiments on Yohkoh, Ulysses, and PVO) may assist in identifying and understanding the acceleration mechanism(s) taking place in this event
COMPTEL gamma-ray observations of the C4 solar flare on 20 January 2000
The “Pre-SMM” (Vestrand and Miller 1998) picture of gamma-ray line (GRL) flares was that they are relatively rare events. This picture was quickly put in question with the launch of the Solar Maximum Mission (SMM). Over 100 GRL flares were seen with sizes ranging from very large GOES class events (X12) down to moderately small events (M2). It was argued by some (Bai 1986) that this was still consistent with the idea that GRL events are rare. Others, however, argued the opposite (Vestrand 1988; Cliver, Crosby and Dennis 1994), stating that the lower end of this distribution was just a function of SMM’s sensitivity. They stated that the launch of the Compton Gamma-ray Observatory (CGRO) would in fact continue this distribution to show even smaller GRL flares. In response to a BACODINE cosmic gamma-ray burst alert, COMPtonTELescope on the CGRO recorded gamma rays above 1 MeV from the C4 flare at 0221 UT 20 January 2000. This event, though at the limits of COMPTEL’s sensitivity, clearly shows a nuclear line excess above the continuum. Using new spectroscopy techniques we were able to resolve individual lines. This has allowed us to make a basic comparison of this event with the GRL flare distribution from SMM and also compare this flare with a well-observed large GRL flare seen by OSSE
X- and gamma-ray observations of the 15 November 1991 Solar Flare
This work expands the current understanding of the 15 November 1991 Solar Flare. The flare was a well observed event in radio to gamma-rays and is the first flare to be extensively studied with the benefit of detailed soft and hard X-ray images. In this work, we add data from all four instruments on the Compton Gamma Ray Observatory. Using these data we determined that the accelerated electron spectrum above 170 keV is best fit with a power law with a spectral index of −4.6, while the accelerated proton spectrum above 0.6 MeV is fit with a power law of spectral index −4.5. From this we computed lower limits for the energy content of these particles of∼1023 ergs (electrons) and ∼1027 ergs (ions above 0.6 MeV). These particles do not have enough energy to produce the white-light emission observed from this event. We computed a time constant of 26+20−15 s for the 2.223 MeV neutron capture line, which is consistent at the 2σ level with the lowest values of ∼70 s found for other flares. The mechanism for this short capture time may be better understood after analyses of high energy EGRET data that show potential evidence for pion emission near ∼100 MeV
MeV measurements of γ-ray bursts by CGRO-COMPTEL: Revised catalog
The imaging COMPTEL telescope has accumulated 0.1–30 MeV spectra, time-histories, and positions of more than forty γ-ray bursts within its ∼3 sr field of view in the eight years since its launch. CGRO-COMPTEL measures in both imaging “telescope” and single detector “burst spectroscopy” mode. In an ongoing collaboration with BACODINE/GCN, bursts are imaged automatically, with localizations relayed to a global network of multiwavelength observers in near real time (∼10 minutes). We have updated our burst search procedure in two ways: 1) using more sensitive search algorithms; and 2) using data from more detectors. The first are double change-point algorithms. With these we can find regions of significant excess flux with no assumptions on the wide range of burst time-scales (e.g., rise-times or decay-times) or intensities, and only one adjustable parameter (the time-averaged count-rate of the detectors). This makes it simpler to combine information on burst time-histories from the larger effective area (but cruder time bins) burst spectroscopy detectors, and hence better pinpoint the best times for imaging each burst. We report the eight bursts detected during 1998–1999
MeV measurements of gamma-ray bursts by CGRO-COMPTEL
Since the launch of the Compton Gamma-Ray Observatory in April 1991, the imaging COMPTEL telescope has accumulated positions and 0.75–30 MeV spectra of more than thirty gamma-ray bursts within its ∼π sr field of view. In an ongoing collaboration with BACODINE/GCN, COMPTEL positions are relayed to a global network of multiwavelength observers in near real time (∼10 minutes). Here we summarize the MeV properties, and present spatial, spectral, and temporal data for the latest of these events, GRB 970807. In concurrence with earlier SMM and current BATSE, OSSE, and EGRET measurements, COMPTEL data add to the accumulating evidence that GRB spectra do seem to have a characteristic shape: a peak (inE2F(E) ) around several hundred keV; and a power law above (spectral index 1.5–3.5) extending beyond the COMPTEL energy range
Dynamics of two planets in co-orbital motion
We study the stability regions and families of periodic orbits of two planets
locked in a co-orbital configuration. We consider different ratios of planetary
masses and orbital eccentricities, also we assume that both planets share the
same orbital plane. Initially we perform numerical simulations over a grid of
osculating initial conditions to map the regions of stable/chaotic motion and
identify equilibrium solutions. These results are later analyzed in more detail
using a semi-analytical model. Apart from the well known quasi-satellite (QS)
orbits and the classical equilibrium Lagrangian points L4 and L5, we also find
a new regime of asymmetric periodic solutions. For low eccentricities these are
located at , where \sigma is
the difference in mean longitudes and \Delta\omega is the difference in
longitudes of pericenter. The position of these Anti-Lagrangian solutions
changes with the mass ratio and the orbital eccentricities, and are found for
eccentricities as high as ~ 0.7. Finally, we also applied a slow mass variation
to one of the planets, and analyzed its effect on an initially asymmetric
periodic orbit. We found that the resonant solution is preserved as long as the
mass variation is adiabatic, with practically no change in the equilibrium
values of the angles.Comment: 9 pages, 11 figure
Spectra of a recent bright burst measured by CGRO-COMPTEL: GRB 990123
CGRO-COMPTEL measures gamma-ray burst positions, time-histories and spectra in the 0.1–30 MeV energy range, in both imaging “telescope” and single detector “burst spectroscopy” mode. GRB 990123, one of the most recent bright bursts seen by COMPTEL, was caught in the optical while the gamma-ray emission was ongoing. The burst spectral shape can be characterized by a peak in ν−Fν just below 1 MeV and a power-law tail above(photon index∼−2.4,) and flattening below. There is also spectral evolution by downward movement of the peak and/or softening of the power laws. We present light-curves, time resolved spectra and an image map for this burst
- …