52 research outputs found

    Centrality Dependence Of The Pseudorapidity Density Distribution For Charged Particles In Pb-pb Collisions At √snn=2.76tev

    Get PDF
    7264/Mai61062

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    Integrated clinical decision support systems promote absolute cardiovascular risk assessment: an important primary prevention measure in Aboriginal and Torres Strait Islander primary health care

    Get PDF
    Background: Aboriginal and Torres Strait Islander Australians experience a greater burden of disease compared to non-Indigenous Australians. Around one-fifth of the health disparity is caused by cardiovascular disease (CVD). Despite the importance of absolute cardiovascular risk assessment (CVRA) as a screening and early intervention tool, few studies have reported its use within the Australian Indigenous primary health care (PHC) sector. This study utilizes data from a large-scale quality improvement program to examine variation in documented CVRA as a primary prevention strategy for individuals without prior CVD across four Australian jurisdictions. We also examine the proportion with elevated risk and follow-up actions recorded. Methods: We undertook cross-sectional analysis of 2,052 client records from 97 PHC centers to assess CVRA in Indigenous adults aged ≥20 years with no recorded chronic disease diagnosis (2012–2014). Multilevel regression was used to quantify the variation in CVRA attributable to health center and client level factors. The main outcome measure was the proportion of eligible adults who had CVRA recorded. Secondary outcomes were the proportion of clients with elevated risk that had follow-up actions recorded. Results: Approximately 23% (n = 478) of eligible clients had documented CVRA. Almost all assessments (99%) were conducted in the Northern Territory. Within this jurisdiction, there was wide variation between centers in the proportion of clients with documented CVRA (median 38%; range 0–86%). Regression analysis showed health center factors accounted for 48% of the variation. Centers with integrated clinical decision support systems were more likely to document CVRA (OR 21.1; 95% CI 5.4–82.4; p < 0.001). Eleven percent (n = 53) of clients were found with moderate/high CVD risk, of whom almost one-third were under 35 years (n = 16). Documentation of follow-up varied with respect to the targeted risk factor. Fewer than 30% with abnormal blood lipid or glucose levels had follow-up management plans recorded. Conclusion: There was wide variation in CVRA between jurisdictions and between PHC centers. Learnings from successful interventions to educate and support centers in CVRA provision should be shared with stakeholders more widely. Where risk has been identified, further improvement in follow-up management is required to prevent CVD onset and reduce future burden in Australia’s Indigenous population. Introduction Health inequities between Aboriginal and Torres Strait Islander (respectfully referred to as Indigenous) and non-Indigenous Australians are well documented (1, 2) and are a legacy of colonization, disempowerment and ongoing racial, social and economic inequality (3). It has been estimated that continued inequality accounts for between one-third and one-half of the 10-year life expectancy gap between Indigenous and non-Indigenous people (2, 4), highlighting the importance of addressing the social determinants of health and ensuring equity of access to quality health care. Highly preventable chronic diseases contribute most to the higher rate of poor health and premature death experienced by Aboriginal and Torres Strait Islander people. Cardiovascular disease (CVD), largely driven by the combined effect of several modifiable risk factors such as smoking and obesity, is the leading contributor accounting for one-fifth of the health gap (1). In addition to improving social and economic determinants of health, effective CVD prevention, through regular screening and early intervention, would make a significant contribution to reducing the health gap and disease burden within the Indigenous population (5). Health promotion, prevention, and early treatment services are a key component of Australia’s primary health care (PHC) system. Access to PHC for Aboriginal and Torres Strait Islander people is through community-controlled health centers, government-operated community health centers, and private general practitioners (GPs), with some variation across diverse geographies. Aboriginal and Torres Strait Islander community-controlled centers and some government centers operating in predominantly Indigenous communities offer models of comprehensive PHC providing access to doctors, nurses, allied health, social and emotional wellbeing professionals, and medical specialists. Service size, however, varies depending on remoteness, with visiting services a feature of remote locations. A recent national initiative, “Better cardiac care for Aboriginal and Torres Strait Islander people,” outlines priority action areas to address inequities in cardiovascular health service delivery between Indigenous and non-Indigenous people (6). Priority actions are staged across the disease continuum and include cardiovascular risk assessment (CVRA) as a key aspect of primary prevention, along with practitioner follow-up and intervention for those identified at risk, such as pharmacotherapy and ongoing culturally appropriate support to facilitate lifestyle modification (5). Absolute CVRA is a screening and management process intended for use by PHC practitioners to calculate the probability of a cardiovascular event within 5 years, taking into account the synergistic effect of multiple risk factors that may be present (7). The risk calculator takes account of age, sex, systolic blood pressure, smoking status, levels of total and high-density lipoprotein cholesterol, and presence of diabetes (7). Despite the importance of CVRA as a screening and early intervention tool, few studies have reported its use within the Indigenous PHC sector or in the broader Australian PHC setting. This reflects the lack of national and jurisdictional data on CVRA and PHC services in general (6). In 2012, the Northern Territory (NT) government implemented a large-scale strategy to strengthen chronic disease prevention in Indigenous communities that included regular CVRA data collection and reporting and the roll-out of an automated CVRA calculator within the electronic medical record system used by government health centers (8). In 2015, a similar calculator was introduced into the Communicare electronic medical record system used by many Aboriginal and Torres Strait Islander community-controlled health centers in the NT and other jurisdictions. This study examines variation in documented CVRA for adults with no prior diagnosis of chronic disease as a primary prevention strategy in Indigenous PHC centers across four Australian jurisdictions (2012–2014). We also report on the proportion of Indigenous people found with elevated risk and the proportion that had subsequent follow-up actions documented.Veronica Matthews, Christopher P. Burgess, Christine Connors, Elizabeth Moore, David Peiris, David Scrimgeour ... et al
    corecore