531 research outputs found

    A counterfactual study of the Charge of the Light Brigade

    Get PDF
    We use a mathematical model to perform a counterfactual study of the 1854 Charge of the Light Brigade. We first calibrate the model with historical data so that it reproduces the actual charge’s outcome. We then adjust the model to see how that outcome might have changed if the Heavy Brigade had joined the charge, and/or if the charge had targeted the Russian forces on the heights instead of those in the valley. The results suggest that all of the counterfactual attacks would have led to heavier British casualties. However, a charge by both brigades along the valley might plausibly have yielded a British victory

    Coherent spin-valley oscillations in silicon

    Full text link
    Electron spins in silicon quantum dots are excellent qubits because they have long coherence times, high gate fidelities, and are compatible with advanced semiconductor manufacturing techniques. The valley degree of freedom, which results from the specific character of the Si band structure, is a unique feature of electrons in Si spin qubits. However, the small difference in energy between different valley levels often poses a challenge for quantum computing in Si. Here, we show that the spin-valley coupling in Si, which enables transitions between states with different spin and valley quantum numbers, enables coherent control of electron spins in Si. We demonstrate coherent manipulation of effective single- and two-electron spin states in a Si/SiGe double quantum dot without ac magnetic or electric fields. Our results illustrate that the valley degree of freedom, which is often regarded as an inconvenience, can itself enable quantum manipulation of electron spin states

    Speciation in Golden-Plovers, Pluvialis dominica and P. fulva: Evidence from the Breeding Grounds

    Get PDF
    Two forms of golden-plover have long been considered subspecies, Pluvialisdominica dominica and P. d. fulva. Prior studies have shown differences between forms in breeding distributions, wintering distributions, plumage, morphology, molt, and maturation schedules. We report clear and consistent differences in breeding vocalizations and nesting habitat, and strict assortative mating in areas of sympatry in western Alaska. These results indicate a greater degree of differentiation between the forms than was previously appreciated. They are appropriately treated as separate species and should be referred to under the names Pluvialis dominica, for the American Golden-Plover, and Pluvialis fulva, for the Pacific Golden-Plover

    First results of the BATSE/COMPTEL/NMSU rapid burst response campaign

    Get PDF
    The Imaging Compton Telescope (COMPTEL) on board the Compton Gamma Ray Observatory regularly observes gamma‐ray bursts which occur inside the instrument’s ∌1 sr field‐of‐view. COMPTEL images bursts in the 0.75–30 MeV energy range with a typical location accuracy of 1–3 degrees, depending on burst strength, position, duration, and spectrum. COMPTEL’s imaging capability has been exploited in order to search for fading gamma‐ray burst counterparts at other wavelengths through the establishment of a BATSE/COMPTEL/NMSU rapid burst response campaign. This campaign utilizes near real‐time identification and preliminary burst location by BATSE, accelerated COMPTEL imaging, and a world‐wide network of observers to search COMPTEL error boxes as quickly as possible. Timely, deep searches for lingering counterpart emission of several bursts per year are the realized goal of this campaign. During its first year of operation, the rapid response program has been successfully applied to two strong bursts: GRB 930131 and GRB 930309. These bursts were imaged in record time only hours after their occurrence. Subsequently, several observations were made at radio and optical observatories world‐wide

    Preliminary Report on Stone Breakage and Lesion Size Produced by a New Extracorporeal Electrohydraulic (Sparker Array) Discharge Device

    Get PDF
    Objective To determine if an innovative extracorporeal electrohydraulic shock wave device (sparker array) can effectively fracture artificial stones in vitro and in vivo, and if sparker array treatment produces a renal lesion in our pig model of lithotripsy injury. Results of these experiments will be used to help evaluate the suitability of this device as a clinical lithotripter. Methods Utracal-30 artificial stones were placed in a holder at the focus of the sparker array and treated with 600 shock waves (21.6 kV, 60 shocks/min). Stone fragments were collected, dried and weighed to determine stone breakage. In vivo stone breakage entailed implanting stones into pigs. These stones were treated with 600 or 1200 shock waves and the fragments collected for analysis. Lesion analysis consisted of treating the left kidney of pigs with 1200 or 2400 shock waves and quantitating the hemorrhagic lesion. Results In vitro, 71±2% of each artificial stone was fractured to < 2 mm in size. In vivo stone breakage averaged 63%. Renal injury analysis revealed that only 1 out of 7 kidneys showed evidence of hemorrhagic injury in the treated area. Conclusions The sparker array consistently comminuted artificial stones demonstrating its ability to fracture stones like other lithotripters. Also, the sparker array caused little to no renal injury at the settings used in this study. These findings suggest further research is warranted to determine the potential of this device as a clinical lithotripter

    How Many Squirrels Are in the Shrubs? A Lesson Plan for Comparing Methods for Population Estimation

    Get PDF
    Estimating the population sizes of animals is a key skill for any student interested in ecology, conservation, or management. However, counting animals in natural habitats is difficult, and the many techniques that exist each rely on assumptions that can bias results. Most wildlife courses teach one or two of these methods, but rarely are students given an opportunity to compare approaches and explore how underlying assumptions affect the accuracy of estimates. Here, we describe a hands-on activity in which students estimate the size of a single population of animals using multiple methods: strip censuses, scat counts, and camera traps. They then compare the estimates and evaluate how the assumptions of each model (e.g., random use of habitats and animal behavior) bias the results. Finally, students submit their data to a national database that aggregates observations across multiple institutions as part of Squirrel-Net (http://squirrel-net.org). They can then analyze the national dataset, permitting exploration of these questions across a broader variety of habitats and species than would be possible at any single institution. Extensions of this activity guide students to enumerate the advantages and disadvantages of each method in different contexts and to select the most appropriate method for a given scenario. This activity and the database focus on estimating population sizes of squirrels, which are diurnal, charismatic, easily identified, and present in a wide range of habitats (including many campuses), but the same methods could be broadly used for other terrestrial species, including birds, amphibians, reptiles, or invertebrates

    Squirreling from Afar: Adapting Squirrel-Net Modules for Remote Teaching and Learning

    Get PDF
    The shift from face-to-face instruction to remote teaching and learning has proven to be a challenging endeavor for many reasons, including lack of time, resources, and inspiration. Lab courses, the “hands-on” portion of many curricula, may be especially difficult to adapt to online learning given the common use of specialized equipment, materials, and techniques that require close supervision. Without the time and resources to creatively modify existing activities or create new ones, remote lab courses run the risk of becoming less effective, equitable, and/or engaging. Squirrel-Net has created four field-based activities for biology labs that are easy to implement, highly flexible for different course aims, and readily adaptable to a remote learning environment. In this essay, we briefly summarize the modules and propose several ways that each can be adjusted to accommodate online teaching and learning. By providing authentic learning opportunities through distance delivery we hope to promote widespread student engagement and creative solutions for instructors

    Squirrels in Space: Using Radio Telemetry to Explore the Space Use and Movement of Sciurid Rodents

    Get PDF
    Biotelemetry is used by researchers to track the interactions of animals with each other and the environment. While advancing technology has led to the development of numerous biotelemetry tools, radio telemetry remains the most common method for tracking small animals. Moreover, telemetry tracking of animal movement is an important skill for entry-level positions in wildlife biology. Thus, hands-on experience using radio telemetry provides students with an advantage as they pursue careers in wildlife biology, as well as an opportunity to build science process skills. We present a lesson in which students use radio telemetry to track animals; collect, analyze and interpret spatial data; and consider its applications to local wildlife management and conservation. Students submit their data to a national database collecting observations from multiple institutions as part of Squirrel-Net (http://squirrel-net.org). The aggregated data allows students to generate and test hypotheses across a broader variety of species and habitats than would be possible at any single institution. The lesson is designed for adaptation to diverse educational contexts, from a single two-hour laboratory period (basic skills acquisition) to a semester-long student-driven research project (open inquiry Course-based Undergraduate Research Experience, or CURE). Although this activity and the national database focus on spatial data for squirrels, which are diurnal, charismatic, easily identified, and present on most college campuses, the same methods and materials can be modified for any animal capable of carrying a radio transmitter and being safely tracked by students

    Sorry to Eat and Run: A Lesson Plan for Testing Trade-off in Squirrel Behavior Using Giving Up Densities (GUDs)

    Get PDF
    All animals need to find and compete for food, shelter, and mates in order to survive and reproduce. They also need to avoid being eaten by predators. Optimal foraging theory provides a framework to examine the trade-offs individuals make while foraging for food, taking into account an animal’s body condition, predation pressure, quality of food resources, and food patch availability in the habitat. Here we describe an activity that uses Giving Up Densities (GUDs), which could be used as part of a course-based undergraduate research experience (CURE) or as a stand-alone activity. GUDs provide an experimental approach to quantify the costs and benefits of foraging in a particular patch and is simple to measure in that it is literally the density of food remaining in a patch. However, its interpretation allows students to compare foraging decisions under different environmental conditions, between species, or with different food sources. This activity was designed to study the foraging behavior of squirrels, which are active during the day, forage on seeds, and are found on and around many college campuses, but it can be adapted to nocturnal animals, birds, or other vertebrates. This module is hands-on. Students weigh seeds, sift sand, walk out into the field with bags of sand and trays, and analyze data. The module can be designed at various levels of inquiry to suit the needs of a particular class. Further, students can work individually, in pairs, or in teams. Finally, students and instructors are encouraged to upload their data to a national dataset, which is available to instructors for use in the classroom to broaden the possible hypotheses and analyses students can explore
    • 

    corecore