420 research outputs found

    Takotsubo cardiomyopathy associated with anesthesia: three case reports

    Get PDF
    Takotsubo cardiomyopathy is a form of transient, reversible left ventricular dysfunction that can mimic an acute coronary event. However, cardiac catheterization often reveals normal coronary arteries. Patients are often postmenopausal women who experience acute physical or emotional distress. The prognosis for this entity is quite favorable. In this report, we present three cases of Takotsubo cardiomyopathy in patients having procedures involving anesthesia. Each case illustrates a different etiology for the syndrome: Patient, procedure, and anesthetic management

    Complement Inhibition as a Proposed Neuroprotective Strategy following Cardiac Arrest

    Get PDF
    Out-of-hospital cardiac arrest (OHCA) is a devastating disease process with neurological injury accounting for a disproportionate amount of the morbidity and mortality following return of spontaneous circulation. A dearth of effective treatment strategies exists for global cerebral ischemia-reperfusion (GCI/R) injury following successful resuscitation from OHCA. Emerging preclinical as well as recent human clinical evidence suggests that activation of the complement cascade plays a critical role in the pathogenesis of GCI/R injury following OHCA. In addition, it is well established that complement inhibition improves outcome in both global and focal models of brain ischemia. Due to the profound impact of GCI/R injury following OHCA, and the relative lack of effective neuroprotective strategies for this pathologic process, complement inhibition provides an exciting opportunity to augment existing treatments to improve patient outcomes. To this end, this paper will explore the pathophysiology of complement-mediated GCI/R injury following OHCA

    Does Cognitive Dysfunction after Carotid Endarterectomy Vary by Statin Type or Dose?

    Get PDF
    Abstract Our prev ious work demonstrates that asymptomatic carotid endarterectomy (CEA ) patients demonstrate less perioperative neurologic in jury, defined as stroke and early cognitive dysfunction (eCD) observed within 24h r of CEA, when taking statins pre-operatively. This study examines whether the incidence of eCD observed 24hr after asympto matic CEA varies as a function of statin type or dose. Patients with asymptomatic carotid stenosis scheduled for CEA consented to participate in an observational IRB-approved study (N=324). Pat ients were evaluated with an extensive battery of neuropsychometric tests pre-operatively and 24hr post-operatively. Of the 324 consented patients, 200 were taking statins. Patients taking pravastatin and fluvastatin exhib ited no eCD, while patients taking lovastatin (17.7%) and rosuvastatin (16.7%) exh ib ited incidences of eCD similar to those not taking statins (20.2%). Patients taking simvastatin exhib ited a significantly lower incidence of eCD than those taking atorvastatin (3.0% vs. 16.0%, P=0.005). Patients taking a maximal dose of any statin exhib ited a significantly lower incidence of eCD than patients taking sub-maximal doses (2.7% vs. 15.9%, P=0.002). These observations suggest that the incidence of eCD may in fact vary as a function of statin type and that maximal doses may be the optimal dose for patients undergoing CEA. This variation may be due to the physico-chemical properties of statins such as lipophilicity, molecu lar size, and b lood brain barrier penetrability. These findings should be used to inspire randomized prospective work to determine the safety, feasibility, and outcomes of optimizing statin use prior to CEA

    Role of gC1qR as a modulator of endothelial cell permeability and contributor to post-stroke inflammation and edema formation

    Get PDF
    Ischemic stroke is a leading cause of death and disability worldwide. A serious risk of acute ischemic stroke (AIS) arises after the stroke event, due to inflammation and edema formation. Inflammation and edema in the brain are mediated by bradykinin, the formation of which is dependent upon a multi-ligand receptor protein called gC1qR. There are currently no preventive treatments for the secondary damage of AIS produced by inflammation and edema. This review aims to summarize recent research regarding the role of gC1qR in bradykinin formation, its role in inflammation and edema following ischemic injury, and potential therapeutic approaches to preventing post-stroke inflammation and edema formation

    Temporal pattern of C1q deposition after transient focal cerebral ischemia

    Full text link
    Recent studies have focused on elucidating the contribution of individual complement proteins to post-ischemic cellular injury. As the timing of complement activation and deposition after cerebral ischemia is not well understood, our study investigates the temporal pattern of C1q accumulation after experimental murine stroke. Brains were harvested from mice subjected to transient focal cerebral ischemia at 3, 6, 12, and 24 hr post reperfusion. Western blotting and light microscopy were employed to determine the temporal course of C1q protein accumulation and correlate this sequence with infarct evolution observed with TTC staining. Confocal microscopy was utilized to further characterize the cellular localization and characteristics of C1q deposition. Western Blot analysis showed that C1q protein begins to accumulate in the ischemic hemisphere between 3 and 6 hr post-ischemia. Light microscopy confirmed these findings, showing concurrent C1q protein staining of neurons. Confocal microscopy demonstrated co-localization of C1q protein with neuronal cell bodies as well as necrotic cellular debris. These experiments demonstrate the accumulation of C1q protein on neurons during the period of greatest infarct evolution. This data provides information regarding the optimal time window during which a potentially neuroprotective anti-C1q strategy is most likely to achieve therapeutic success. © 2006 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50651/1/20775_ftp.pd

    Nutritional support and brain tissue glucose metabolism in poor-grade SAH: a retrospective observational study

    Get PDF
    INTRODUCTION: We sought to determine the effect of nutritional support and insulin infusion therapy on serum and brain glucose levels and cerebral metabolic crisis after aneurysmal subarachnoid hemorrhage (SAH). METHODS: We used a retrospective observational cohort study of 50 mechanically ventilated poor-grade (Hunt-Hess 4 or 5) aneurysmal SAH patients who underwent brain microdialysis monitoring for an average of 109 hours. Enteral nutrition was started within 72 hours of admission whenever feasible. Intensive insulin therapy was used to maintain serum glucose levels between 5.5 and 7.8 mmol/l. Serum glucose, insulin and caloric intake from enteral tube feeds, dextrose and propofol were recorded hourly. Cerebral metabolic distress was defined as a lactate to pyruvate ratio (LPR) > 40. Time-series data were analyzed using a general linear model extended by generalized estimation equations (GEE). RESULTS: Daily mean caloric intake received was 13.8 ± 6.9 cal/kg and mean serum glucose was 7.9 ± 1 mmol/l. A total of 32% of hourly recordings indicated a state of metabolic distress and < 1% indicated a state of critical brain hypoglycemia (< 0.2 mmol/l). Calories received from enteral tube feeds were associated with higher serum glucose concentrations (Wald = 6.07, P = 0.048), more insulin administered (Wald = 108, P < 0.001), higher body mass index (Wald = 213.47, P < 0.001), and lower body temperature (Wald = 4.1, P = 0.043). Enteral feeding (Wald = 1.743, P = 0.418) was not related to brain glucose concentrations after accounting for serum glucose concentrations (Wald = 67.41, P < 0.001). In the presence of metabolic distress, increased insulin administration was associated with a relative reduction of interstitial brain glucose concentrations (Wald = 8.26, P = 0.017), independent of serum glucose levels. CONCLUSIONS: In the presence of metabolic distress, insulin administration is associated with reductions in brain glucose concentration that are independent of serum glucose levels. Further study is needed to understand how nutritional support and insulin administration can be optimized to minimize secondary injury after subarachnoid hemorrhage

    Maternal Morbidity Outcomes in Idiopathic Moyamoya Syndrome in New York State

    Get PDF
    Background: Pregnancy is associated with an increased risk of stroke in young women. Idiopathic moyamoya syndrome (IMMS) is a rare condition characterized by progressive narrowing of large cerebral arteries resulting in flimsy collaterals prone to rupture or thrombosis. Data are limited on pregnancy outcomes in women with IMMS. We hypothesized that IMMS would be associated with increased pregnancy morbidity, including stroke. Conclusion: Pregnancies within 1 year prior or any time after IMMS diagnosis did not have increased maternal morbidity compared to unexposed pregnancies after adjusting for age and clustering of women with multiple pregnancies. Prospective studies are needed to better characterize increased maternal risks for women with moyamoya syndrome and develop preventive strategies
    corecore