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ABSTRACT 
We present an automated generic methodology for symmetry identification and  asymmetry quantification, novel method 
of identifying and delineation of brain pathology by analyzing the opposing sides of the brain utilizing of inherent left-
right symmetry in the brain. After symmetry axis has been detected, we apply  non-parametric statistical tests operating 
on the pairs of samples to identify initial seeds points which is defined defined as the pixels where the most statistically 
significant difference appears. Local region growing is performed on the difference map, from where the seeds are 
aggregating until it captures all 8-way connected high signals from the difference map. We illustrate the capability of our 
method with examples ranging from tumors in patient MR data to animal stroke data. The validation results on Rat 
stroke data have shown that this approach has promise to achieve high precision and full automation in segmenting  
lesions in reflectional symmetrical  objects.  
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1. INTRODUCTION 
Medical image segmentation, that is a process of identifying and delineating anatomical structures and other objects in 
images, still largely remains an open problem, in spite of several decades of research  from various imaging modalities 
[19]. There are many brain segmentation approaches evolved from low level image operation such as thresholding, edge 
detection, mathematical morphology[10], to more sophisticated image processing methods such as statistical 
classification[11][12], active contours[20], neural networks[4], fuzzy connectedness [21], and hybrid segmentation 
methods [22]. However, clinical image analysis indicates that to successfully differentiate between organ and tumor 
tissue image information alone is insufficient  [6]. For example, if a  tumor shows insufficient contrast against the 
healthy brain  tissue, the active contour classification  requires  a selection  of seed to initialize segmentation, hence the 
method is not fully automated. Other statistical classification methods are also limited due to overlapping intensity 
distributions of healthy tissue, tumor, and surrounding edema.  

In the digital anatomical atlas –based segmentation [13] prior knowledge about normal  brain anatomy is used, 
including the size, shape and location of anatomical structures. However, the shape and other characteristics of  tumors 
and other brain pathologies  are highly variable, thus  representing  prior knowledge is not always possible. In [6], Kaus 
et al propose an adaptive template moderated classification (ATMC) method that combines the statistical classification 
with anatomical knowledge. The algorithm involves iterative process of classification of patient’s data and nonlinear 
registration to match the anatomical templates of a digital atlas with the brain anatomy of the patient. However,  such 
atlases, obtained from manually segmented MR imaging are not always available and such an approach has a limited 
use.  

In this paper, we propose a novel method of identifying and delineation of brain pathology by analyzing the opposing 
sides of the brain.  In another words, we replace the need for a digital atlas with the cross-registration between opposing 
hemispheres of the brain. Because brain exhibits high level of bilateral symmetry and this symmetry is distorted in a 
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presence of a pathology, we utilize the inherent left-right symmetry in the brain and  use the healthy side of the brain as 
our prior template to statistically enhance the differences  in high dimensional feature space.  

With our fully automated system we segment brain abnormalities such as  tumors, stroke, and other pathologies. We 
replace spatial prior of a generic statistical normal human brain atlas with the subject-specific left-to-right symmetry 
information derived from the subject's brain images. We use human and rat data with stroke and tumors to demonstrate 
the capabilities of our method. We define a pipeline that can accurately capture the asymmetries between two 
hemispheres, quantify the discrepancies and segment the pathologies. In the Results section, we show examples that 
illustrate the pipeline.  

We illustrate the capability of our method with examples ranging from tumors in patient MR data to animal stroke 
data. This method can be used to improve  segmentation of pathology in structural brain images and as quantification of 
perfusion-weighted tomography. There in a number of clinical applications in neuro-radiology where this method can be 
useful: identification and segmentation of ischemic stroke in animal [1,23] and human models, quantification of 
magnetic resonance perfusion (MRP) changes in patients with cognitive deficits following carotid endarterectomy [2], 
objective quantification  of perfusion-weighted computer tomography in the setting of acute aneurysmal subarachnoid 
hemorrhage [3,4]. 

The paper is organized as follows. In section 2, we will have a detailed description   of our proposed algorithm. The 
results  is presented in Section 3. We evaluate the results in Section 4 and conclude our work in Section V.  

 

2. METHODS 
We propose an automated  segmentation tool, depicted in the flowchart in Fig. 1. that utilizes the inherent left-right 
symmetry in the brain. In the first step  the symmetry axis is computed  and the tilt of the head is corrected by applying 
standard affine transform. The detection of slight variations in the left to right brain imagery is complicated by normal 
differences in the anatomical structures occurring in the data set. Therefore,  we utilize  the apparent bi-lateral symmetry 
in brain imagery through the application of non-parametric statistical tests operating on the pairs of samples and non-
parametric statistical tests on local averages. This technique can highlight regions that can be further examined in a 
“statistical” sense.  The highlighted region can be used as “seeds” for later propagation in the difference map that 
quantifies differences between brain hemispheres [3,4].  

 

Fig.1 Flow chart of proposed segmentation scheme 
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The statistical tests provide the ”likelihood” of the difference to appear randomly given the samples, that has  1:N 
chance of occurrence without un underlying difference being present.   Finally a region is grown within the difference 
map yielding a segmentation of an abnormal target in the brain. 

As shown in Fig.1,  the major components of our proposed segmentation pipeline, consists of two consecutive steps, 
seeds drawing and seeds aggregation.  Unlike most current region based segmentation approaches, seeds placement is 
fully automated. Seeds are understood as the occurrence of the regions with statistically minimal chances of an 
underlying symmetry being present.  

In radiological brain  images, to measure differences in bi-fold mirror symmetry the axis of symmetry must be 
computed and the image “self-registered” to this axis.    After detection and registration of the image to the axis of 
symmetry, the data can be checked for significant differences in the image in regions collocated relative to the given axis 
of symmetry. This approach defines the essence of the relative difference map (RDM) method [3,4], that quantifies and 
highlights asymmetric areas in two brain hemispheres. In this paper, we refine the method of selecting an axis of 
symmetry and  computation of relative asymmetry with respect to the  axis of symmetry. Our method allows to compute 
the RDM for an image. We select a pair of symmetric windows (image elements), being ordered sets of points, about the 
axis of symmetry and compute set of relative differences with the associated statistics while scanning simultaneously 
both hemispheres. 

Thus the seeds placement is further composed of the following sub-components: Symmetry detection, tilt correction 
and asymmetry measurement by non-parametric statistical tests. 

 
2.1 Symmetry Detection and asymmetry measurement—Seeds drawing 
Many clinical images are misaligned, tilted, a phenomenon that may be caused by the immobility of  the patient, 
inexperience of the technician, or the imaging device itself,  symmetry detection and correction of the misalignment 
comprises the first entry of the pipeline. Various approaches to detecting, analyzing, measuring and applying symmetry 
in image analysis have been suggested, see [7,8,9]. Some of them [17,18] can even detect 3D symmetry out of the stack 
of images. In our early work[2-3], an algorithm for detecting the symmetry axes of a 2D planar shape is presented. 

We summarize the seeds drawing algorithm into the following steps: 1) Identifying the axis of symmetry; Step 2) 
Affine transform to re-center and re-orient the image 3) Conducting statistical symmetry measurement  to highlight the 
“sufficient”  asymmetry ; 

 
2.1.1 Identification of Symmetry Axis 
Let us assume that we have a single object in of interest. The area of the region 

}0,),(:),{( >>∈= ααyxIRyxR , with the given the characteristic function can be found as follows: 

dydxdxdxyxA
RI ∫∫∫∫ == ),(χ  

With the integration over the whole image I,  and A defined as  the 0th moment of Rχ  Then the center of the object is 
computed, that is that point where all the mass of the object could be  concentrated without changing the first moment 
about any x-axis[14]. 

=x ( ) Axdxdy
R

/∫∫   

      =y ( ) Aydxdy
R

/∫∫  

 
where ),( yx is the position of the center of area. 

The technique follows rays  emanating from the centroid ),( yx  to the boundary elements of Rχ . The intersections 
of the ray with the boundary of the region are recorded. Obviously, when the centroid is interior to the region of interest 
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(ROI) all of the points on the boundary are path connected to centroid, and a ray extending from the centroid (a straight 
path) will intersect at least one point on the boundary [15].  

The rays are parameterized by the discrete approximation to k k Zθ θ= ∆ , ∈ . (We will use θ that is discrete to 

simplify notation). The value of θ∆  is chosen as in Fig.2 to insure that the step doesn’t exceed 2  at a given 
maximum radius. For example, by selecting the points furthest away from the centroid this constructs the star shaped 
object, with each of the rays indexed by the angle.  Any image ( ) ( )I x y I r θ, ↔ ,  where the origin )0,0(  is in the 
centroid of the image, with the support of the function being ),( yxRχ . For an object with a well-defined boundary, there 

are lines kl  extending from the centroid ),( yx  of length and direction ( ( ) )r θ θ, . In the polar representation, to 

determine the k − fold mirror symmetric axes we seek the K values }{ ,3,2,1 kφφφφ L minimize the distance (in general) 

p pp drrLeftRightd ∫ =
−−+=

π

θφ θθφθφ
0

)()(),(  

Specifically, for p=1, 

∫ =
−−+=

π

θφ θθφθφ
0

1 )()(),( drrLeftRightd  

with the best symmetry axis being 

),(minarg 1 LeftRightdφτφ =  

the resulting τφ  that minimizes the distance are the minimum torque arms. Therefore, the problem of identifying 

symmetric axes is simplified to spot the global minimum of symmetry measure S in r-θ  space. This can be implemented 
as comparing the left half and right half of a sliding window across the entire r-θ space, as shown in 2.  The window 
width is equivalent to the total amount of rays completing the transverse of polar space (2π ) and the window height is 
equivalent to the maximum radius preset in the application. Therefore, we are essentially seeking such a state of 
equilibrium where the sum of all the difference between the left pixel and right counterpart over the space π , is the 
minimum (ideally zero), see Fig 2. 

 
(a)                                                                     (b) 

Fig. 2. (a)The axis of symmetry in r-θ space. The sliding window has a width of 2π , and the minimal difference between two halves  
means that window traced through the object from one end of symmetry axes to another. (b) Symmetry measure S(Φ) along the 
2π space orientation. The global minimum of S, indicates the orientation of  symmetry axes. 
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2.1.2 Affine transform to re-center and re-orient the image  
Suppose that an image, f, defined over a (w, z) coordinate system, undergoes geometric transformation to produce an 
image, g, defined over an (x,y) coordinate system. This transformation can be expressed as [x y 1]=[w z 1]T, where  T is 
called transformation matrix. 

cos sin 0
sin cos 0

0x y

T
θ θ
θ θ

δ δ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
θ  is the rotation angle, and ( , )x yδ δ is the translation offset between centroid of the brain and the center of the image.  
 
2.1.3  Application of Statistical Tests Highlight Asymmetry 

 
This method allows to compute the RDM for an image. We select a pair of symmetric windows (image elements), being 
ordered sets of points, about the axis of symmetry and compute set of relative differences with the associated statistics 
while scanning simultaneously both hemispheres. To create pairs of image elements the right or left set of pixels is 
flipped left to right (e.g., RX

t
) allowing us to group pixels into regions that should be significantly similar.  The 

neighborhood of a pixel is defined as a set of offsets from a row of columns, as in Equation 1. Equation 2. The 
neighborhood is used to create the set of image values about 

0 0 1 1{( , ), ( , ), ( , )}k kN r c r c r c= ∆ ∆ ∆ ∆ ∆ ∆L    (1)

 
: ( , ) { ( ', ') : ( , ), ( , ) }NS X r c X r c r r c c r c N= + ∆ + ∆ ∆ ∆ ∈  (2)

the point (r,c).  Of course boundary and background points should be identified and treated appropriately.  Secondly we 
use the Wilcoxon rank sum test for equal median on the elements paired elements and the p value is recorded as in 
Equation 3. 

( , ) ranksum({ : ( , ), : ( , )})N L N Rp r c S X r c S X r c=
t

 (3)

The Wilcoxon rank sum test was selected since it compares the median of the pair wise differences of the two data 
sets with out the restrictions present in the Student's t-test, but other statistical tests can be substituted.   In the form of 
the test p is the probability of observing at least the statistic by chance if the medians are equal.  The calculated 
probabilities can be used to estimate regions in the image that exhibit significant difference by applying a threshold as in 
Equation 4 to obtain a characteristic function. 

1, ( , ) : ( , ) , 0
( , )

0,otherwise                       
r c p r c

r cα

α α
χ

∀ < >⎧
= ⎨
⎩

 (4)

Due to the natural variation present in the biomedical imagery it is possible that there neighborhood which minimizes 
the p of the rank-sum test is slightly offset from the point of bi-fold symmetry.  To compensate for this, the technique 
can consider a set of offsets as in Equation 5 that are used to shift the one of the neighborhoods to compensate for 
asymmetries and accumulate the p values for all offsets to obtain an average  

0 0 1 1{( ' , ' ), ( ' , ' ) ( ' , ' )}l lO r c r c r c= ∆ ∆ ∆ ∆ ∆ ∆L  (5)

p value as in Equation 6. 
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the point (r,c). The boundary and background points should be identified and treated appropriately.  Secondly we use the 
Wilcoxon rank sum test for equal median on the paired elements and the p value is recorded as in Equation 6. 

 

2.2 Region growing within the difference map---Seeds Aggregation  
The basic idea behind region growing is aggregating pixels (voxels) that are adjacent and belong to the same tissue type 
with fairly homogeneous grayscale properties[16].  Region growing approach consists of two major steps: first, selection 
of a set of seed points; second, growing of the region by appending the neighboring pixels (voxels) that have satisfied 
similarity criteria.  In our segmentation pipeline, the seeds have been drawn from the preceeding step where the “seeds” 
can be defined as the pixels where the most statistically significant difference appears. Hence we provide a full 
automation of seed selection. 

The stopping criteria of region growing is formulated based on intensity values of   difference map. Since the “seed” 
assumes a certain number of points, we can caculate its mean and variance. Therefore, the value of each candidate pixel 
is compared with the average intensity of the seed region. A threshold value is used to test if the candidate is sufficiently 
similar to the seeds. In addition, if the pixel in question is 8 way connected to one or more seed values, then the pixel is 
considered a member of one or more regions. The region is being grown within difference map  and a  threshold value 
has been determined based on the variance of the region of interest. 

The output of region that we grow with our methos is a labeled region (volume), where the label indicates the 
membership of a pixel (voxel) in a segmented object. A label of zero indicates that the voxel was not assigned to any 
object. In cases where brain has multiple lesions, the segmented image has multiple distinctive non-zero labels. For 
example, in Fig.6, the brain has two stroke areas therefore, it is being marked with two labels.  Therefore, the proposed 
segmentation pipeline does not require a user to select an initial seed and the segmentation is fully automated.   

3. RESULTS 
We illustrate below our technique on a number of clinical and animal examples. Computation of relative asymmetric 
regions is used for quantification of perfusion-weighted images, and pre-segmentation of brain tumors from structural 
magnetic resonance imaging. The relative or original values are shown superimposed on the detected area of asymmetry.  
In quantification of perfusion-weighted images the relative values of perfusion parameter are displayed and highlighted 
in the detected area of asymmetry, Fig.3(b). In segmentation of brain tumor from structural MR data, Fig.5 and Fig.7, the 
tilt of head has firstly been corrected before the marking of the most significant difference. 

                 

    
(a) (b)                                  (c) 

Fig.3 Perfusion-weighted computed tomography with ischemic stroke, consistent with left Middle Cerebral artery MCA infarction 
(This data was provided by Dr. Bernd Tomandl from Dept. of Neuroradiology at Univesrity of Erlangen-Nuremberg): (a) input data 
with a computed axis of symmetry, (b) relative difference map with relative cerebral blood flow (CBF) values in the area of detected 
asymmetry, (c) the statistical significant difference map. 
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(a)                                        (b)                                          (c)                                (d) 

 

Fig.4. Rat Stroke Segmentation This data was provided by Dr. Anthony L. D'Ambrosio from Dept. of Neurosurgery  at Columbia 
University Presbyterian Hospital. (a) are the original images;(b) are the difference map with corrected orientation;(c) are the statistical 
significant difference images with p value smaller than 5.0770e-014;(d) the final segmented images with original orientation. 

 
 
 

    
(a)                                                            (b)                                                      (c)                             

Fig.5. Human Tumor Segmentation (a) represents original input images; (b) are the re-oriented images with identified difference with 
respect to the symmetry axis; (c) are the final segmented region after region growing from the significant difference seeds derived 
from (b). 
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(a)                                                   (b)                                              (c)  

 

Fig.6. Human Stroke Segmentation in Diffusion Weighted  Images.(DWI). (a) represents original input images; (b) are the re-oriented 
images with identified significant difference; (c) are the final segmented region after region growing. 

 

  

Fig.7. Human Tumor Segmentation 
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4. EVALUATION 
We have applied our automatic segmentation method to 10 rat stroke cases. The tool classifies the whole brain into 
healthy and pathological regions as shown in Figure 8. The surrogate of ground truth is derived from hand-segmented 
delineations from 3 human experts. The “experts” were trained technicians who showed noticeable intra and inter-
operator discrepancy. 

 

Table 1. intra and inter-operator discrepancy when deriving the ground truth. 

 
 

 

Fig.8. Validation of stroke segmentation on rat brain. The leftmost column is the original brain, second  column is the surrogate 
ground truth, the third column contains the results of our proposed automated segmentation method, and the rightmost column is 
result of fuzzy connectedness segmentation.  
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  Area Difference False Negative 
Volume Fraction 

False Positive 
Volume Fraction 

True Positive 
Volume Fraction 

RDM  8.0292% 0.0510949 0.131387 0.948905 Scan1  
Fuzzy  11.1968% 0.143569 0.255537 0.856431 
RDM  0% 0.114662 0.114662 0.885338 Scan2 

  Fuzzy  12.8404% 0.0952236 0.223628 0.904776 
RDM  3.42052% 0.0704225 0.104628 0.929577 Scan3 

 Fuzzy  30.468% 0.103076 0.407756 0.896924 

Table 2.  Accuracy Measurement of 3 rat scans in figure 8. 

 

5. CONCLUSIONS 
In this paper we present a generic method to compute axis of symmetry and quantification of asymmetry in brain 
imagery. There are various clinical applications that make use of brain imagery where quantification of asymmetry 
provides potential computer-assisted assessment and diagnostic tool:  e.g. objective quantification of perfusion-weighted 
computed tomography  in subarachnoid hemorrhage; quantification of previously undetected silent  infarcts  on MR-
perfusion in patient following carotid endarterectomy;  pre-segmentation of ischemic stroke regions in a rat model of 
temporary middle cerebral artery occlusion; quantification of diffusion-weighted images and apparent diffusion 
coefficient maps in the detection of acute strokes. In each of these studies such a potential computer-assisted tool will 
have to be thoroughly validated in clinical setting using ROC (receiver operating characteristic) methodology [5], to 
show that the method improves diagnostic and/or assessment outcome. This approach consists of: 1) identifying the axis 
of symmetry; 2) measurements of pixel-wise symmetry between the two hemispheres; 3) statistical classification and 
modeling of the difference map; 4) evaluation of the system in assisted diagnosis. The preliminary results have shown 
that this approach has promise to achieve high precision and full automation in segmenting  lesions in reflectional 
symmetry objects.  
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