697 research outputs found

    Polyimides containing pendent siloxane groups

    Get PDF
    The incorporation of siloxane units into the backbone of aromatic polyimides has been shown to impart certain advantages over the unmodified polyimides. These include enhanced solubility, lower moisture adsorption, lower dielectric constant, improved toughness and surface modification. Also, when exposed to an atomic oxygen environment these materials form an in-situ silicate (SiO2) surface coating which protects the underlying material from further erosion. These unique advantages make polyimide-siloxanes useful in a variety of electronic and aerospace applications. As part of an effort on high performance polymeric materials for potential aerospace applications, polyimides containing pendent siloxane groups are under study. These materials were prepared by reacting a functionalized siloxane compound with polyimides containing benzhydrol groups. Thin films of the polymers exhibited glass transition temperatures ranging from 167 to 235 C. Tensile strengths and moduli measured at 23 C ranged from 11 to 14 ksi and 250 to 450 ksi, respectively. The dielectric constant was lowered substantially from that of the unmodified polyimide

    Polyimidazoles via aromatic nucleophilic displacement

    Get PDF
    Polyimidazoles (PI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethyl acetamide, sulfolane, N-methylpyrrolidinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl) imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxphenyl) imidazole monomer. This synthetic route has provided high molecular weight PI of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds

    Preliminary properties of a resin from ethynyl terminated materials

    Get PDF
    A blend composed of an ethynyl terminated aspartimide (brittle component) and an ethynyl terminated arylene ether oligomer (tough component) was thermally cured to yield a resin which underwent preliminary evaluation to determine the potential for use in structural applications on aerospace vehicles. The blend exhibited good compression moldability, allowing for fabrication of neat moldings, adhesive specimens and composites at temperatures of 250 C under a pressure of 1.4 MPa (200 psi). Neat resin moldings and adhesive specimens provided relatively high mechanical properties. Composite specimens provided promising results in spite of fiber misalignment, fiber washout, and a small amount of panel warpage

    Polyphenylquinoxalines via Aromatic Nucleophilic Displacement

    Get PDF
    Polyphenylquinoxalines are produced by an aromatic nucleophilic displacement reaction involving an activated aromatic dihalide with an appropriate quinoxaline monomer. Polyphenylquinoxalines are high temperature thermoplastics used as adhesives, coatings, films and composite matrices. The novelty of this invention is threefold: (1) some of the quinoxaline monomers are new compositions of matter; (2) the phenylquinoxaline polymers which are the end products of the invention are new compositions of matter; and (3) the method of forming the polymers is novel, replacing a more costly prior art process, which is also limited in the kinds of products prepared therefrom

    Poly(1,3,4-oxadiazoles) via aromatic nucleophilic displacement

    Get PDF
    Poly(1,3,4-oxadiazoles) (POX) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) 1,3,4-oxadiazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as sulfolane or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) 1,3,4-oxadiazole monomers are synthesized by reacting 4-hydroxybenzoic hydrazide with phenyl 4-hydrobenzoate in the melt and also by reacting aromatic dihydrazides with two moles of phenyl 4-hydroxybenzoate in the melt. This synthetic route has provided high molecular weight POX of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the large variety of activated aromatic dihalides which are available

    Acetylene terminated aspartimides and resins therefrom

    Get PDF
    Acetylene terminated aspartimides are prepared using two methods. In the first, an amino-substituted aromatic acetylene is reacted with an aromatic bismaleimide in a solvent of glacial acetic acid and/or m-cresol. In the second method, an aromatic diamine is reacted with an ethynyl containing maleimide, such an N-(3-ethynyl phenyl) maleimide, in a solvent of glacial acetic acid and/or m-cresol. In addition, acetylene terminated aspartimides are blended with various acetylene terminated oligomers and polymers to yield composite materials exhibiting improved mechanical properties

    N-(3-ethynylphenyl)maleimide

    Get PDF
    Acetylene terminated aspartimides are prepared using two methods. In the first, an amino-substituted aromatic acetylene is reacted with an aromatic bismaleimide in a solvent of glacial acetic acid and/or m-cresol. In the second method, an aromatic diamine is reacted with an ethynyl containing maleimide, such as N-(3-ethynylphenyl) maleimide, in a solvent of glacial acetic acid and/or m-cresol. In addition, acetylene terminated aspartimides are blended with various acetylene terminated oligomers and polymers to yield composite materials exhibiting improved mechanical properties

    Method for exfoliation of hexagonal boron nitride

    Get PDF
    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications

    Polyenamines from aromatic diacetylenic diketones and diamines

    Get PDF
    The synthesis and characterization of several polyenamine ketones are discussed wherein conjugated diacetylenic diketones and aromatic diamines are used as a route to the formation of high molecular weight polyenamine ketones which exhibit good mechanical properties and can be cast into creasible films. Typical polymerization conditions involved the reaction of stoichiometric amounts of 1,4- or 1,3-PPPO and a diamine at 60 to 130 C in m-cresol at (w/w) solids content of 8 to 26% for a specified period of time under a nitrogen atmosphere. Novel polyenamine ketones were prepared with inherent viscosities as high as 1.99 dl/g and tough, clear amber films with tensile strengths of 12,400 psi and tensile moduli of 397,000 psi were cast from solutions of the polymers in chloroform. In most cases, the elemental analyses for the polyenamine ketones agree within + or - 0.3% of the theoretical values

    Polyphenylquinoxalines via aromatic nucleophilic displacement

    Get PDF
    Polyphenylquinoxalines are prepared by the nucleophilic displacement reaction of di(hydroxyphenyl)quinoxaline monomers with activated aromatic dihalides or dinitro compounds. The reactions are carried out in polar aprotic solvents during alkali metal bases at elevated temperatures under nitrogen. The di(hydroxyphenyl)quinoxaline monomers are prepared either by reacting stoichiometric quantities of aromatic bis(o-diamines) with a hydroxybenzil or by reacting o-phenylenediamine with a dihydroxybenzil or bis(hydroxyphenylglyoxylyl)benzene
    corecore